Электрической дуги. Процесс образования электрической дуги и способы ее гашения

Электрическая сварочная дуга – это длительный электрический разряд в плазме, которая представляет собой смесь ионизированных газов и паров компонентов защитной атмосферы, присадочного и основного металла.

Дуга получила свое название от характерной формы, которую она принимает при горении между двумя горизонтально расположенными электродами; нагретые газы стремятся подняться вверх и этот электрический разряд изгибается, принимая форму арки или дуги.

С практической точки зрения дугу можно рассматривать как газовый проводник, который преобразует электрическую энергию в тепловую. Она обеспечивает высокую интенсивность нагрева и легко управляема посредством электрических параметров.

Общей характеристикой газов является то, что они в нормальных условиях не являются проводниками электрического тока. Однако, при благоприятных условиях (высокая температура и наличие внешнего электрического поля высокой напряженности) газы могут ионизироваться, т.е. их атомы или молекулы могут освобождать или, для электроотрицательных элементов наоборот, захватывать электроны, превращаясь соответственно в положительные или отрицательные ионы. Благодаря этим изменениям газы переходят в четвертое состояние вещества называемого плазмой, которая является электропроводной.

Возбуждение сварочной дуги происходит в несколько этапов. Например, при сварке МИГ/МАГ, при соприкосновении конца электрода и свариваемой детали возникает контакт между микро выступами их поверхностей. Высокая плотность тока способствует быстрому расплавлению этих выступов и образованию прослойки жидкого металла, которая постоянно увеличивается в сторону электрода, и в конце концов разрывается.

В момент разрыва перемычки происходит быстрое испарение металла, и разрядный промежуток заполняется ионами и электронами возникающими при этом. Благодаря тому, что к электроду и изделию приложено напряжение электроны и ионы начинают двигаться: электроны и отрицательно заряженные ионы - к аноду, а положительно заряженные ионы – к катоду, и таким образом возбуждается сварочная дуга. После возбуждения дуги концентрация свободных электронов и положительных ионов в дуговом промежутке продолжает увеличиваться, так как электроны на своем пути сталкиваются с атомами и молекулами и "выбивают" из них еще больше электронов (при этом атомы, потерявшие один и более электронов, становятся положительно заряженными ионами). Происходит интенсивная ионизация газа дугового промежутка и дуга приобретает характер устойчивого дугового разряда.

Через несколько долей секунды после возбуждения дуги на основном металле начинает формироваться сварочная ванна, а на торце электрода – капля металла. И спустя еще примерно 50 – 100 миллисекунд устанавливается устойчивый перенос металла с торца электродной проволоки в сварочную ванну. Он может осуществляться либо каплями, свободно перелетающими дуговой промежуток, либо каплями, которые сначала образуют короткое замыкание, а затем перетекают в сварочную ванну.

Электрические свойства дуги определяются процессами, протекающими в ее трех характерных зонах – столбе, а также в приэлектродных областях дуги (катодной и анодной), которые находятся между столбом дуги с одной стороны и электродом и изделием с другой.

Для поддержания плазмы дуги при сварке плавящимся электродом достаточно обеспечить ток от 10 до 1000 ампер и приложить между электродом и изделием электрическое напряжение порядка 15 – 40 вольт. При этом падение напряжения на собственно столбе дуги не превысит нескольких вольт. Остальное напряжение падает на катодной и анодной областях дуги. Длина столба дуги в среднем достигает 10 мм, что соответствует примерно 99% длины дуги. Таким образом, напряженность электрического поля в столбе дуги лежит в пределах от0,1 до 1,0 В/мм. Катодная и анодная области, напротив, характеризуются очень короткой протяженностью (около 0.0001 мм для катодной области, что соответствует длине свободного пробега иона, и 0.001 мм для анодной, что соответствует длине свободного пробега электрона). Соответственно, эти области имеют очень высокую напряженность электрического поля (до 104 В/мм для катодной области и до 103 В/мм для анодной).

Экспериментально установлено, что для случая сварки плавящимся электродом падение напряжения в катодной области превышает падение напряжения в анодной области: 12 – 20 В и 2 – 8 В соответственно. Учитывая то, что выделение тепла на объектах электрической цепи зависит от тока и напряжения, то становится понятным, что при сварке плавящимся электродом больше тепла выделяется, в той области, на которой падает больше напряжения, т.е. в катодной. Поэтому при сварке плавящимся электродом используется, в основном, обратная полярность подключения тока сварки, когда катодом служит изделие для обеспечения глубокого проплавления основного металла (при этом положительный полюс источника питания подключают к электроду). Прямую полярность используют иногда при выполнении наплавок (когда проплавление основного металла, напротив, желательно чтобы было минимальным).

В условиях сварки ТИГ (сварка неплавящимся электродом) катодное падение напряжения, напротив, значительно ниже анодного падения напряжения и, соответственно, в этих условиях больше тепла выделяется уже на аноде. Поэтому при сварке неплавящимся электродом для обеспечения глубокого проплавления основного металла изделие подключают к положительной клемме источника питания (и оно становится анодом), а электрод подключают к отрицательной клемме (таким образом, обеспечивая еще и защиту электрода от перегрева).

При этом, независимо от типа электрода (плавящийся или неплавящийся) тепло выделяется, в основном, в активных областях дуги (катодной и анодной), а не в столбе дуги. Это свойство дуги используется для того, чтобы плавить только те участки основного металла, на которые направляется дуга.

Те части электродов, через которые проходит ток дуги, называют активными пятнами (на положительном электроде – анодным, а на отрицательном – катодным пятном). Катодное пятно является источником свободных электронов, которые способствуют ионизации дугового промежутка. В то же время к катоду устремляются потоки положительных ионов, которые его бомбардируют и передают ему свою кинетическую энергию. Температура на поверхности катода в области активного пятна при сварке плавящимся электродом достигает 2500 … 3000 °С.


Lк - катодная область; Lа - анодная область (Lа = Lк = 10 -5 -10 -3 см); Lст - столб дуги; Lд - длина дуги; Lд = Lк + Lа + Lст

К анодному пятну устремляются потоки электронов и отрицательно заряженных ионов, которые передают ему свою кинетическую энергию. Температура на поверхности анода в области активного пятна при сварке плавящимся электродом достигает 2500 … 4000°С. Температура столба дуги при сварке плавящимся электродом составляет от 7 000 до 18 000°С (для сравнения: температура плавления стали равна примерно 1500°С).

Влияние на дугу магнитных полей

При выполнении сварки на постоянном токе часто наблюдается такое явление как магнитное. Оно характеризуется следующими признаками:

Столб сварочной дуги резко откланяется от нормального положения;
- дуга горит неустойчиво, часто обрывается;
- изменяется звук горения дуги - появляются хлопки.

Магнитное дутье нарушает формирование шва и может способствовать появлению в шве таких дефектов как непровары и несплавления. Причиной возникновения магнитного дутья является взаимодействие магнитного поля сварочной дуги с другими расположенными близко магнитными полями или ферромагнитными массами.

Столб сварочной дуги можно рассматривать как часть сварочной цепи в виде гибкого проводника, вокруг которого существует магнитное поле.

В результате взаимодействия магнитного поля дуги и магнитного поля, возникающего в свариваемой детали при прохождении тока, сварочная дуга отклоняется в сторону противоположную месту подключению токопровода.

Влияние ферромагнитных масс на отклонение дуги обусловлено тем, что вследствие большой разницы в сопротивлении прохождению магнитных силовых линий поля дуги через воздух и через ферромагнитные материалы (железо и его сплавы) магнитное поле оказывается более сгущенным со стороны противоположной расположению массы, поэтому столб дуги смещается в сторону ферромагнитного тела.

Магнитное поле сварочной дуги увеличивается с увеличением сварочного тока. Поэтому действие магнитного дутья чаще проявляется при сварке на повышенных режимах.

Уменьшить влияние магнитного дутья на сварочный процесс можно:

Выполнением сварки короткой дугой;
- наклоном электрода таким образом, чтобы его торец был направлен в сторону действия магнитного дутья;
- подведением токоподвода ближе к дуге.

Уменьшить эффект магнитного дутья можно также заменой постоянного сварочного тока на переменный, при котором магнитное дутье проявляется значительно меньше. Однако необходимо помнить, что дуга переменного тока менее стабильна, так как из-за смены полярности она погасает и зажигается вновь 100 раз в секунду. Для того, чтобы дуга переменного тока горела стабильно необходимо использовать стабилизаторы дуги (легкоионизируемые элементы), которые вводят, например, в покрытие электродов или во флюс.

Принцип электродуговой сварки основан на использовании температуры электрического разряда, возникающего между сварочным электродом и металлической заготовкой.

Дуговой разряд образуется вследствие электрического пробоя воздушного промежутка. При возникновении этого явления происходит ионизация молекул газа, повышение его температуры и электропроводности, переход в состояние плазмы.

Горение сварочной дуги сопровождается выделением большого количества световой и особенно тепловой энергии, вследствие чего резко повышается температура, и происходит локальное плавление металла заготовки. Это и есть сварка.

В процессе работы, для того, чтобы возбудить дуговой разряд, производится кратковременное касание заготовки электродом, то есть, создание короткого замыкания с последующим разрывом металлического контакта и установлением требуемого воздушного зазора. Таким способом выбирается оптимальная длина сварочной дуги.

При очень коротком разряде электрод может прилипать к заготовке, плавление происходит чересчур интенсивно, что может привести к образованию наплывов. Длинная дуга отличается неустойчивостью горения и недостаточно высокой температурой в зоне сварки.

Неустойчивость и видимое искривление формы сварочной дуги часто можно наблюдать при работе промышленных сварочных агрегатов с достаточно массивными деталями. Это явление называется магнитным дутьем.

Суть его заключается в том, что сварочный ток дуги создает некоторое магнитное поле, которое взаимодействует с магнитным полем, создаваемым током, протекающим через массивную заготовку.

То есть, отклонение дуги вызывается магнитными силами. Дутьем процесс назван потому, что дуга отклоняется, как будто под воздействием ветра.

Радикальных способов борьбы с этим явлением нет. Для уменьшения влияния магнитного дутья применяют сварку укороченной дугой, а также располагают электрод под определенным углом.

Среда горения

Существует несколько различных сварочных технологий, использующих электродуговые разряды, отличающиеся свойствами и параметрами. Электрическая сварочная дуга имеет следующие разновидности:

  • открытая. Горение разряда происходит непосредственно в атмосфере;
  • закрытая. Образующаяся при горении высокая температура вызывает обильное выделение газов от сгорающего флюса. Флюс содержится в обмазке сварочных электродов;
  • в среде защитных газов. В этом варианте, в зону сварки подается газ, чаще всего, это гелий, аргон или углекислый газ.

Защита зоны сварки необходима для предотвращения активного окисления плавящегося металла под воздействием кислорода воздуха.

Слой окисла препятствует образованию сплошного сварного шва, металл в месте соединения приобретает пористость, в результате чего снижается прочность и герметичность стыка.

В какой-то мере дуга сама способна создавать микроклимат в зоне горения за счет образования области повышенного давления, препятствующего притоку атмосферного воздуха.

Применение флюса позволяет более активно выдавливать воздух из зоны сварки. Использование среды защитных газов, подаваемых под давлением, решает эту задачу практически полностью.

Продолжительность разряда

Кроме критериев защищенности, дуговой разряд классифицируется по продолжительности. Существуют процессы, в которых горение дуги происходит в импульсном режиме.

В таких устройствах сварка осуществляется короткими вспышками. За время вспышки, температура успевает возрасти до величины, достаточной для локального расплавления небольшой зоны, в которой образуется точечное соединение.

Большинство же применяемых сварочных технологий использует относительно продолжительное по времени горение дуги. В течение сварочного процесса происходит постоянное перемещение электрода вдоль соединяемых кромок.

Область повышенной температуры, создающая , перемещается вслед за электродом. После перемещения сварочного электрода, следовательно, и дугового разряда, температура пройденного участка снижается, происходит кристаллизация сварочной ванны и образование прочного сварного шва.

Структура дугового разряда

Область дугового разряда условно принято делить на три участка. Участки, непосредственно прилегающие к полюсам (аноду и катоду), называют соответственно, анодным и катодным.

Центральную часть дугового разряда, расположенную между анодной и катодной областями, называют столбом дуги. Температура в зоне сварочной дуги может достигать нескольких тысяч градусов (до 7000 °C).

Хотя тепло не полностью передается металлу, его вполне хватает для расплавления. Так, температура плавления стали для сравнения составляет 1300-1500 °C.

Для обеспечения устойчивого горения дугового разряда необходимы следующие условия: наличие тока порядка 10 Ампер (это минимальное значение, максимум может достигать 1000 Ампер), при поддержании напряжения дуги от 15 до 40 Вольт .

Падение этого напряжения происходит в дуговом разряде. Распределение напряжения по зонам дуги происходит неравномерно. Падение большей части приложенного напряжения происходит в анодной и катодной зонах.

Экспериментальным путем установлено, что при , наибольшее падение напряжения наблюдается в катодной зоне. В этой же части дуги наблюдается наиболее высокий градиент температуры.

Поэтому, при выборе полярности сварочного процесса, катод соединяют с электродом, когда хотят добиться наибольшего его плавления, повысив его температуру. Наоборот, для более глубокого провара заготовки, катод присоединяют к ней. В столбе дуги падает наименьшая часть напряжения.

При производстве сварочных работ неплавящимся электродом, катодное падение напряжения меньше анодного, то есть, зона повышенной температуры смещена к аноду.

Поэтому, при этой технологии, заготовка подключается к аноду, чем обеспечивается хороший ее прогрев и защита неплавящегося электрода от излишней температуры.

Температурные зоны

Следует заметить, что при любом виде сварки, как плавящимся, так и неплавящимся электродом, столб дуги (его центр) имеет самую высокую температуру – порядка 5000-7000 °C, а иногда и выше.

Зоны наиболее низкой температуры располагаются в одной из активных областей, катодной или анодной. В этих зонах может выделяться 60-70% тепла дуги.

Кроме интенсивного повышения температуры заготовки и сварочного электрода, разряд излучает инфракрасные и ультрафиолетовые волны, способные оказывать вредное влияние на организм сварщика. Это обусловливает необходимость применения защитных мер.

Что касается сварки переменным током, понятие полярности там не существует, так как положение анода и катода изменяется с промышленной частотой 50 колебаний в секунду.

Дуга в этом процессе обладает меньшей устойчивостью по сравнению с постоянным током, ее температура скачет. К преимуществам сварочных процессов на переменном токе, можно отнести только более простое и дешевое оборудование, да еще практически полное отсутствие такого явления, как магнитное дутье, о котором сказано выше.

Вольт-амперная характеристика

На графике представлены кривые зависимости напряжения источника питания от величины сварочного тока, называемые вольт–амперными характеристиками сварочного процесса.

Кривые красного цвета отображают изменение напряжения между электродом и заготовкой в фазах возбуждения сварочной дуги и устойчивого ее горения. Начальные точки кривых соответствуют напряжению холостого хода источника питания.

В момент возбуждения сварщиком дугового разряда, напряжение резко снижается вплоть до того периода, когда параметры дуги стабилизируются, устанавливается значение тока сварки, зависящее от диаметра применяемого электрода, мощности источника питания и установленной длины дуги.

С наступлением этого периода, напряжение и температура дуги стабилизируются, и весь процесс приобретает устойчивый характер.

Введение

Способы гашения электрической дуги… Тема актуальна и интересна. Итак начнем. Задаемся вопросами: Что такое электрическая дуга? Как её контролировать? Какие процессы происходят при её образовании? Из чего она состоит? И как выглядит.

Что такое электрическая дуга?

Электрическая дуга (Вольтова дуга, Дуговой разряд ) -- физическое явление, один из видов электрического разряда в газе. Впервые была описана в 1802 году русским учёным В.В.Петровым.

Электрическая дуга является частным случаем четвёртой формы состояния вещества -- плазмы -- и состоит из ионизированного, электрически квазинейтрального газа. Присутствие свободных электрических зарядов обеспечивает проводимость электрической дуги.

Образование и свойства дуги

При увеличении напряжения между двумя электродами до определённого уровня в воздухе между электродами возникает электрический пробой. Напряжение электрического пробоя зависит от расстояния между электродами и пр. Зачастую, для инициирования пробоя при имеющемся напряжении электроды приближают друг к другу. Во время пробоя между электродами обычно возникает искровой разряд, импульсно замыкая электрическую цепь.

Электроны в искровых разрядах ионизируют молекулы в воздушном промежутке между электродами. При достаточной мощности источника напряжения, в воздушном промежутке образуется достаточное количество плазмы для того, чтобы напряжение пробоя (или сопротивление воздушного промежутка) в этом месте значительно упало. При этом искровые разряды превращаются в дуговой разряд -- плазменный шнур между электродами, являющийся плазменным тоннелем. Эта дуга является по сути проводником, и замыкает электрическую цепь между электродами, средний ток увеличивается ещё больше нагревая дугу до 5000-50000 K. При этом считается, что поджиг дуги завершён.

Взаимодействие электродов с плазмой дуги приводит к их нагреву, частичному расплавлению, испарению, окислению и другим видам коррозии. Электрическая сварочная дуга представляет собой мощный электрический разряд, протекающий в газовой среде. Дуговой разряд характеризуется двумя основными особенностями: выделением значительного количества тепла и сильным световым эффектом. Температура обычной сварочной дуги около 6000°С.

Свет дуги ослепительно яркий и используется в различных осветительных устройствах. Дуга излучает большое количество видимых и невидимых тепловых (инфракрасных) и химических (ультрафиолетовых) лучей. Невидимые лучи вызывают воспаление глаз и обжигают кожу человека, поэтому для защиты от них сварщики применяют специальные щитки и спецодежду.

Использование дуги

В зависимости от среды, в которой происходит дуговой разряд, различают следующие сварочные дуги:

1. Открытая дуга. Горит в воздухе. Состав газовой среды зоны дуги-- воздух с примесью паров свариваемого металла, материала электродов и электродных покрытий.

2. Закрытая дуга. Горит под слоем флюса. Состав газовой среды зоны дуги -- пары основного металла, материала электрода и защитного флюса.

3. Дуга с подачей защитных газов. В дугу подаются.под давлением различные газы -- гелий, аргон, углекислый газ, водород, светильный газ и различные смеси газов. Состав газовой среды в зоне дуги -- атмосфера защитного газа, пары материала электрода и основного металла.

Питание дуги может осуществляться от источников постоянного или переменного тока. В случае питания постоянным током различают дугу прямой полярности (минус источника питания на электроде, плюс -- на основном металле) и обратной полярности (минус на основном металле, плюс на электроде). В зависимости от материала электродов дуги различают с плавким (металлическим) и неплавким (угольным, вольфрамовым, керамическим и др.) электродами.

При сварке дуга может быть прямого действия (основной металл участвует в электрической цепи дуги) и косвенного действия (основной металл не участвует в электрической цепи дуги). Дуга косвенного действия применяется сравнительно мало.

Плотность тока в сварочной дуге может быть различна. Применяются дуги с нормальной плотностью тока -- 10--20 а/мм2 (обычная ручная сварка, сварка в некоторых защитных газах) и с большой плотностью тока -- 80--120 а/мм2 и больше (автоматическая, полуавтоматическая сварка под флюсом, в среде защитных газов).

Возникновение дугового разряда возможно только в случае, когда газовый столб между электродом и основным металлом будет ионизирован, т. е. будет содержать ионы и электроны. Это достигается тем, что газовой молекуле или атому сообщается соответствующая энергия, называемая энергией ионизации, в результате чего из атомов и молекул выделяются электроны. Среду дугового разряда можно представить газовым проводником электрического тока,имеющим круглоцилиндрическую форму. Состоит дуга из трех областей -- катодная область, столб дуги, анодная область.

Во время горения дуги на электроде и основном металле наблюдаются активные пятна, которые представляют собой нагретые участки на поверхности электрода и основного металла; через эти пятна проходит весь ток дуги. На катоде пятно именуется катодным, на аноде -- анодным. Сечение средней части столба дуги несколько больше размеров катодного и анодного пятен. Его размер соответственно зависит от размеров активных пятен.

Напряжение дуги изменяется в зависимости от плотности тока. Эта зависимость, изображенная графически, называется статической характеристикой дуги. При малых значениях плотности тока статическая характеристика имеет падающий характер, т. е. напряжение дуги уменьшается по мере увеличения тока. Это обусловлено тем, что с увеличением тока площадь сечения столба дуги и электропроводность увеличиваются, а плотность тока и градиент потенциала в столбе дуги уменьшаются. Величина катодного и анодного падений напряжений дуги не изменяется от величины тока и зависит только от материала электрода, основного металла, газовой среды и давления газа в зоне дуги.

При плотностях тока сварочной дуги обычных режимов, применяемых при ручной сварке, напряжение дуги не зависит от величины тока, так как площадь сечения столба дуги увеличивается пропорционально току, а электропроводность изменяется весьма мало, и плотность тока в столбе дуги практически остается постоянной. При этом величина катодного и анодного падений напряжений остается неизменной. В дуге большой плотности тока при увеличении силы тока катодное пятно и сечение столба дуги не могут увеличиваться, хотя плотность тока возрастает пропорционально силе тока. При этом температура и электропроводность столба дуги несколько повышаются.

Напряжение электрического поля и градиент потенциала столба дуги будут возрастать с увеличением силы тока. Катодное падение напряжения увеличивается, вследствие чего статическая характеристика будет носить возрастающий характер, т. е. напряжение дуги с увеличением тока дуги будет возрастать. Возрастающая статическая характеристика является особенностью дуги высокой плотности тока в различных газовых средах. Статические характеристики относятся к установившемуся стационарному состоянию дуги при неизменной ее длине.

Устойчивый процесс горения дуги при сварке может происходить при соблюдении определенных условий. На устойчивость процесса горения дуги влияет ряд факторов; напряжение холостого хода источника питания дуги, род тока, величина тока, полярность, наличие индуктивности в цепи дуги, наличие емкости, частота тока и др.

Способствуют улучшению устойчивости дуги увеличение тока, напряжения холостого хода источника питания дуги, включение индуктивности в цепь дуги, увеличение частоты тока (при питании переменным током) и ряд других условий. Устойчивость может быть также существенно улучшена за счет применения специальных электродных обмазок, флюсов, защитных газов и ряда других технологических факторов.

гашение электрическая дуга сварочный

Если говорить о характеристиках вольтовой дуги, то стоит упомянуть, что она отличается более низким напряжением, чем тлеющий разряд, и полагается на термоэлектронное излучение электронов от электродов, поддерживающих дугу. В англоязычных странах этот термин считается архаичным и устаревшим.

Методы подавления дуги можно использовать для уменьшения ее продолжительности или вероятности образования.

В конце 1800-х годов вольтова дуга широко использовалась для общественного освещения. Некоторые электрические дуги низкого давления используются во многих приложениях. Например, для освещения применяются люминесцентные лампы, ртутные, натриевые и металлогалогенные лампы. Ксеноновые дуговые лампы использовались для кинопроекторов.

Открытие вольтовой дуги

Считается, что это явление впервые было описано сэром Хамфри Дэви в статье 1801 года, опубликованной в Journal of Natural Philosophy, Chemistry and Arts Уильяма Николсона. Однако явление, описанное Дэви, не было электрической дугой, но лишь искрой. Поздние исследователи писали: «Это, очевидно, описание не дуги, а искры. Суть первой заключается в том, что она должна быть непрерывной, и ее полюса не должны соприкасаться после того, как она возникла. Искра, созданная сэром Хамфри Дэви, была явно не непрерывной, и хотя в течение некоторого времени после контакта с атомами углерода оставалась заряженной, скорее всего не было соединения дуги, которое необходимо для ее классификации как вольтовой».

В том же году Дэви публично продемонстрировал эффект перед Королевским обществом, передав электрический ток через два соприкасающихся угольных стержня, а затем оттянув их на небольшое расстояние друг от друга. Демонстрация показала «слабую» дугу, с трудом отличимую от устойчивой искры, между точками древесного угля. Научное сообщество предоставило ему более мощную батарею из 1000 пластин, и в 1808 году он продемонстрировал возникновение вольтовой дуги в крупных масштабах. Ему также приписывают ее название на английском языке (electric arc). Он назвал ее дугой, потому что она принимает форму восходящего лука, когда расстояние между электродами становится близким. Это связано с проводящими свойствами раскаленного газа.

Как появилась вольтова дуга? Первая непрерывная дуга была зафиксирована независимо в 1802 г. и описана в 1803 г. как «специальная жидкость с электрическими свойствами» русским ученым Василием Петровым, экспериментирующий с медно-цинковой батареей, состоящей из 4200 дисков.

Дальнейшее изучение

В конце девятнадцатого века вольтова дуга широко использовалась для общественного освещения. Тенденция электрических дуг к мерцанию и шипению была серьезной проблемой. В 1895 году Герта Маркс Айртон написала серию статей об электричестве, объяснив, что вольтова дуга была результатом контакта кислорода с углеродными стержнями, используемыми для создания дуги.

В 1899 году она была первой женщиной, когда-либо читавшей свой собственный доклад перед Институтом инженеров-электриков (IEE). Ее доклад был озаглавлен как «Механизм электрической дуги». Вскоре после этого Айртон была избрана первой женщиной-членом Института инженеров-электриков. Следующая женщина была принята в институт аж в 1958 году. Айртон подала прошение прочесть доклад перед Королевским научным обществом, но ей не разрешили сделать этого из-за ее пола, и «Механизм электрической дуги» был прочитан Джоном Перри вместо нее в 1901 году.

Описание

Электрическая дуга представляет собой вид с наибольшей плотностью тока. Максимальная сила тока, проводимого по дуге, ограничена только внешней средой, а не самой дугой.

Дуга между двумя электродами может быть инициирована ионизацией и тлеющим разрядом, когда ток через электроды увеличивается. Пробивное напряжение электродного зазора представляет собой комбинированную функцию давления, расстояния между электродами и типа газа, окружающего электроды. Когда начинается дуга, ее напряжение на клеммах намного меньше, чем у тлеющего разряда, а ток выше. Дуга в газах вблизи атмосферного давления характеризуется видимым светом, высокой плотностью тока и высокой температурой. Она отличается от тлеющего разряда примерно одинаковыми эффективными температурами как электронов, так и положительных ионов, и в тлеющем разряде ионы имеют гораздо меньшую тепловую энергию, чем электроны.

При сваривании

Вытянутая дуга может быть инициирована двумя электродами, первоначально находящимися в контакте и разнесенными в процессе эксперимента. Это действие может инициировать дугу без высоковольтного тлеющего разряда. Это способ, которым сварщик начинает сваривать соединение, мгновенно прикасаясь сварочным электродом к предмету.

Другим примером является разделение электрических контактов на переключателях, реле или автоматических выключателях. В высокоэнергетических схемах может потребоваться подавление дуги, чтобы предотвратить повреждение контактов.

Вольтова дуга: характеристики

Электрическое сопротивление вдоль непрерывной дуги создает тепло, которое ионизует больше молекул газа (где степень ионизации определяется температурой), и в соответствии с этой последовательностью газ постепенно превращается в тепловую плазму, которая находится в тепловом равновесии, поскольку температура относительно однородно распределяется по всем атомам, молекулам, ионам и электронам. Энергия, передаваемая электронами, быстро диспергируется с более тяжелыми частицами за счет упругих столкновений из-за их большой подвижности и больших чисел.

Ток в дуге поддерживается термоэлектронной и полевой эмиссией электронов на катоде. Ток может быть сконцентрирован в очень малой горячей точке на катоде - порядка миллиона ампер на квадратный сантиметр. В отличие от тлеющего разряда, дуга имеет мало различимую структуру, поскольку положительный столбец достаточно яркий и простирается почти до электродов с обоих концов. Падение катода и падение анода в несколько вольт происходит в пределах доли миллиметра каждого электрода. Положительный столбец имеет более низкий градиент напряжения и может отсутствовать в очень коротких дугах.

Низкочастотная дуга

Низкочастотная (менее 100 Гц) дуга переменного тока напоминает дугу постоянного тока. На каждом цикле дуга инициируется пробоем, и электроды меняют роли, когда ток меняет направление. По мере увеличения частоты тока не хватает времени для ионизации при расхождении на каждом полупериоде, и пробой больше не нужен для поддержания дуги - характеристика напряжения и тока становится более омической.

Место среди прочих физических явлений

Различные формы электрических дуг являются возникающими свойствами нелинейных моделей тока и электрического поля. Дуга встречается в заполненном газом пространстве между двумя проводящими электродами (часто из вольфрама или углерода), что приводит к возникновению очень высокой температуры, способной плавить или испарять большинство материалов. Электрическая дуга представляет собой непрерывный разряд, в то время как аналогичный электрический искровой разряд является мгновенным. Вольтова дуга может возникать либо в цепях постоянного тока, либо в цепях переменного. В последнем случае она может повторно ударяться о каждом полупериоде возникновения тока. Электрическая дуга отличается от тлеющего разряда тем, что плотность тока довольно велика, а падение напряжения внутри дуги низкое. На катоде плотность тока может достигать одного мегаампера на квадратный сантиметр.

Разрушительный потенциал

Электрическая дуга имеет нелинейную зависимость между током и напряжением. Как только дуга будет создана ​​(либо путем прогрессирования из тлеющего разряда, либо путем мгновенного касания электродов, а затем разделения их), увеличение тока приводит к более низкому напряжению между дуговыми терминалами. Этот эффект отрицательного сопротивления требует, чтобы какая-то положительная форма импеданса (как электрического балласта) была помещена в цепь для поддержания стабильной дуги. Это свойство является причиной того, что неконтролируемые электрические дуги в аппарате становятся настолько разрушительными, ведь после своего возникновения дуга будет потреблять все больше тока от источника постоянного напряжения до тех пор, пока устройство не будет уничтожено.

Практическое применение

В промышленном масштабе электрические дуги используются для сварки, плазменной резки, механической обработки электрическим разрядом, в качестве дуговой лампы в кинопроекторах и в освещении. Электродуговые печи используются для производства стали и других веществ. Карбид кальция получают именно таким образом, поскольку для достижения эндотермической реакции (при температурах 2500 °С) требуется большое количество энергии.

Углеродистые дуговые огни были первыми электрическими огнями. Они использовались для уличных фонарей в XIX веке и для создания специализированных устройств, таких как прожекторы, до Второй мировой войны. Сегодня электрические дуги низкого давления используются во многих областях. Например, для освещения используются люминесцентные лампы, ртутные, натриевые и металлогалогенные лампы, а ксеноновые дуговые лампы используются для кинопроекторов.

Формирование интенсивной электрической дуги, подобно мелкомасштабной дуговой вспышке, является основой взрывоопасных детонаторов. Когда ученые узнали, что такое вольтова дуга и как ее можно использовать, разнообразие мирового вооружения пополнилось эффективной взрывчаткой.

Основным оставшимся применением является высоковольтное распределительное устройство для сетей передачи. Современные устройства также используют гексафторид серы под высоким давлением.

Заключение

Несмотря на частоту ожогов вольтовой дугой, она считается очень полезным физическим явлением, до сих пор широко использующимся в промышленности, производстве и создании декоративных предметов. Она обладает своей эстетикой, и ее образ часто мелькает в научно-фантастических фильмах. Поражение вольтовой дугой не является смертельным.

Наш сайт сварак.ру публикует сатью по данной теме. Впервые явление вольтовой дуги наблюдал русский академик Петров, получив искровой разряд.

Вольтова дуга характеризуется двумя свойствами:

  • выделением большого количества теплоты
  • сильным лучеиспусканием.

И то и другое свойство электрической дуги использовано в технике.

Для сварочной техники первое свойство является- положи-тельным фактором, второе - отрицательным.

В качестве электропроводов для электрического разряда могут служить любые электропроводные материалы. Чаще всего в качестве проводников употребляют угольные и графитные стержни круглого сечения (дуговые фонари).

Типичный вариант между двумя углями изображена на рисунке.

Верхний электрод присоединен к положительному полюсу машины (анод). Второй уголь соединен с отрицательным полюсом (катод).

Электрическая сварочная дуга

Температура электрической дуги, ее воздействие.

Выделение теплоты неодинаково в различных точках дуги. У положительного электрода выделяется 43% всего количества, у отрицательного 36% и в самой дуге (между электродами) остальные 21%.

Схема зон и их температуры в сварочной дуге

В связи с этим и температура на электродах неодинакова. Анод имеет около 4000° С , а катод 3400°. В среднем считают температуру электрической дуги 3500° С.

Благодаря различной температуре на полюсах вольтовой дуги угольные проводники

берутся различной толщины. Положительный уголь берется толще, отрицательный -

тоньше. Стержень дуги (средняя часть) состоит из потока электронов, выбрасываемых катодом, которые с огромной скоростью несутся к аноду. Обладая большой кинетической энергией, они ударяются о поверхность анода, преобразуя кинетическую энергию в тепловую.

Окружающий его зеленоватый ореол является местом химических реакций, происходящих между парами вещества электродов и атмосферой, в которой горит вольтова дуга.

Процесс возникновения сварочной дуги

Возникновение электрической дуги

Процесс образования вольтовой дуги представляется в следующем виде. В момент соприкосновения электродов проходящий ток выделяет большое количество тепла в месте стыка, так как здесь имеется большое электрическое сопротивление (закон Джоуля).

Благодаря этому концы проводников раскаляются до светлого накала, и после разъединения электродов катод начинает испускать электроны, которые, пролетая через воздушный промежуток между электродами, расщепляют молекулы воздуха на положительно и отрицательно заряженные частички (катионы и» а н и о н ы).

Вследствие этого воздух становится электропроводным.

В сварочной технике наибольшее применение имеет разряд между металлическими электродами, причем одним электродом являйся металлический стержень, который в то же время служит и присадочным материалом, а вторым электродом является сама свариваемая деталь.

Процесс остается тот же, что и в случае угольных электродов, но здесь появляется новый фактор. Если в угольной дуге проводники постепенно испарялись (сгорали), то в металлической дуге электроды весьма интенсивно плавятся и частично испаряются. Благодаря наличию металлических паров между электродами сопротивление (электрическое) металлической дуги ниже, чем угольной.

Угольный разряд горит при напряжении в среднем 40-60 в, тогда как напряжение металлической дуги в среднем 18-22 в (при длине 3 мм).

Длина дуги, кратер, провар.

Сам процесс дуговой электросварки протекает следующим образом.

Как только мы коснемся находящимся под напряжением электродом изделия и тотчас же отведем его на некоторое расстояние, образуется вольтова дуга и сейчас же начинается плавление основного металла и металла проводника. Следовательно, конец электрода все время находится в расплавленном состоянии, и жидкий металл с него в виде капель переходит на свариваемый шов, где металл электрода смешивается с расплавленным металлом свариваемого изделия.

Исследования показали, что таких капель переходит, с электрода около 20-30 в секунду, т. е. процесс этот совершается очень быстро.

Хотя вольтова дуга и развивает очень высокую температуру, выделение тепла ею производится на очень небольшом пространстве как раз под дугой.

Схема длинны дуги

Если мы будем рассматривать через темные стекла дугу, возбужденную металлическим электродом, то убедимся, что в месте образования дуги между электродом и основным металлом на основном металле выделяется добела нагретая поверхность, которая непосредственно под дутой имеет вид углубления, заполненного жидким металлом. Получается такое впечатление, что это углубление образовано как бы выдуванием жидкого металла дугой. Это углубление называется сварочной ванной. Она окружена металлом, нагретым до белого каления, причем температура нагрева области, прилегающей, быстро падает до красного цвета и уже на небольшом расстоянии, величина которой колеблется в зависимости от диаметра электрода и силы тока, температура сравнивается с температурой самого свариваемого предмета.

Хорошая и плохая сварочная дуга, как отличить? Полезные советы.

Расстояние между концом электрода и дном ванны, т. е. поверхностью расплавленного металла, называется длиной дуги. Эта величина имеет очень большое значение в технике сварки. Для получения хорошей сварки необходимо длину дуги брать как можно меньше, т. е. держать дугу короче, причем длина ее не должна превосходить 3-4 мм. Конечно, длина дуги не является величиной постоянной, так как конец электрода все время плавится и, следовательно, расстояние между ним и кратером увеличивалось бы; если бы электрод держать неподвижно до тех пор, пока связь не оборвалась. Поэтому при сварке необходимо все время электрод приближать по мере его плавления к основному металлу, чтобы поддержать длину дуги приблизительно постоянной в пределах 2-4 мм.

Необходимость поддержать короткую дугу (т. е. не длиннее 3-4 мм) вызывается тем, что расплавленный металл электрода поглощает при своем переходе с электрода в кратер кислород и азот из окружающего дугу воздуха, что ухудшает его механические качества (относительное удлинение и сопротивление удару). Понятно, что вредное действие воздуха будет тем меньше, чем меньше времени жидкий металл будет проходить через воздух.

Короткая:

При короткой дуге это время будет меньше, чем при длинной и, следовательно, металл электрода не успеет поглотить столько кислорода и азота, сколько могли бы, проходя большой путь из-за длинной дуги. Так как стремление каждого сварщика должно всегда заключаться в том, чтобы получить наилучший по своим качествам шов, то поэтому подержанно короткой дуги является Обязательным условием хорошей сварки. Короткую дугу можно отличить не только по виду, но также и по слуху, так как короткая дуга издает характерное сухое потрескивание, напоминающее по звуку треск масла, вылитого на раскаленную сковороду. Этот звук короткой дуги каждый сварщик должен хорошо знать.

Длинная:

При длинной дуге (т. е. при длине больше 4 мм) мы никогда не получим хорошего шва. Не говоря уже о том, что при длинной дуге будет происходить сильное окисление металла шва, сам шов также имеет очень неровный вид. Происходит это оттого, что длинный разряд является менее устойчивым, чем короткий, искра имеет стремление как бы блуждать и отклоняться в стороны от места сварки, вследствие чего нагрев от нее создается не такой, как при короткой дуге, а распространяется на большую площадь. Благодаря этому тепло, излучаемое дугой, не все идет на расплавление металла в месте сварки, а рассеивается частично напрасно по большой поверхности.

При длинной дуге получается поэтому плохой провар, и, кроме того, капли с электрода, : падая на плохо прогретое место, не сплавляются с основным металлом, а разбрызгиваются в стороны.

По внешнему виду всегда можно сразу отличить шов, сваренной короткой или длинной дугой. Правильно проваренный короткой дугой шов имеет правильные очертания, гладкую выпуклую поверхность и чистый, блестящий вид. Шов, сваренный длинной дугой, имеет неровный бесформенный вид и окружен многочисленными каплями и брызгами застывшего металла с электрода. Такой шов, конечно, совершенно негоден.

Защита от электрической дуги

Примеры защитных костюмов против электрической дуги

Если сварочные аппараты применяют дугу, то многие другие аппараты и кроме того человек должен ее избегать. Риск появления дуги на оборудовании зависит от не скольких параграфов:

  • частотностью использования оборудования работником;
  • опыт и знаниями работников имеющих дело с аппаратной частью
  • уровень износа оборудования;

Если на человеке нет необходимого индивидуально-защитного костюма и он попадает в зону действия электрической дуги, шансы выжить довольно резко уменьшаются. Возможность получить тяжелые ожоги крайне высока.

Таблица: степень воздействия электрической дуги

Какие возможности защиты от эл. Дуги?

  1. соблюдайте все необходимые правила и нормы безопасности;
  2. в случае длительного использования защитного материала, частых стирок, костюм не должен ухудшаться; (все зависит от модели);
  3. ткань должна иметь максимум 2 секунды остаточного возгорания;
  4. вы должны надевать специальную обувь, обладающих антистатическим действием а также иметь костюм для защиты от электрической дуги .


Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: