Какое значение имеет фосфор для растений. Фосфорные удобрения: значение для растений и особенности внесения

Реферат на тему:

РОЛЬ И ЗНАЧЕНИЕ ФОСФОРА В ПИТАНИИ РАСТЕНИИ

— один из наиболее распространенных элементов на поверхности Земли; уровень его содержание в земной коре составляет 0,1 % массы. В свободном состоянии не встречается из-за своей химической активности, образует около 190 минералов, важнейшими из которых являются апатит Ca5(PO4)3F, фосфорит Ca3(PO4)2 и флюорит CaF2. Фосфор есть во всех элементах зеленых растений, еще больше его в плодах и семенах. Содержится в животных тканях, входит в состав белков и других важнейших органических соединений, является неотъемлемым элементом жизни.

Фосфору принадлежит особая роль в питания растений. Он выполняет энергетическую и конституционную функции в растениях и других организмах. Фосфор входит в состав многих жизненно важных фосфорорганических соединений, среди которых наибольшее значение имеют АТФ и нуклеиновые кислоты, участвующие практически во всех биохимических процессах энергетического обмена в клетке, передаче наследственной информации, синтезе ферментов, белков, углеводов и других веществ. Макроэргические связи АТФ являются главным акцептором энергии, образующейся при фотосинтезе и в процессе дыхания клетки, а также основным поставщиком энергии, необходимой для осуществления синтеза белков, жиров, углеводов и активного поступления элементов питания в растения. Важная роль фосфора в составе фосфатидов — образование липидных цитоплазматических мембран, контролирующих поступление питательных веществ в растения.

Поскольку фосфор «контролирует» практически все биохимические процессы жизнедеятельности растений, своевременное обеспечение их питания фосфором имеет первостепенное значение для формирования высоких урожаев сельскохозяйственных культур.

Установлено, что недостаточная обеспеченность растений фосфором в первые 12-15 дней после появления всходов негативно сказывается на росте и развитии растений в течение всего периода вегетации, а следовательно, и на урожайности, даже если в дальнейшем растения были хорошо обеспечены фосфором. Первые две недели после всходов являются критическим периодом растений в отношении фосфорного питания. Фосфорное голодание в этот период приводит к нарушению обмена веществ в растениях и снижению их продуктивности.

Результаты длительных опытов показывают, что на дерново-подзолистых почвах с низким содержанием подвижных фосфатов (40— 70 мг Р205 на 1 кг почв) продуктивность севооборотов составляет менее 2,0 т з.е./га. При содержании Р,05120—140 мг/кг она увеличивается до 3,5—4,0 т з.е./га, а при высоком содержании Р,05 (250-300 мг/кг) продуктивность возрастает до 5—6 т з.е./га и выше. По мере увеличения содержания подвижных фосфатов в почве значительно уменьшается зависимость урожайности сельскохозяйственных культур от неблагоприятных погодных условий.

Фосфор (от греч. phosphoros — светоносный) имеет один устойчивый нуклид 31Р (атомная масса 30,974). В агрохимических исследованиях также нашли широкое применение искусственные радиоактивные изотопы 32Р и 33Р, обладающие соответственно высокой и мягкой энергией Р-излучения с периодом полураспада 14,3 и 25,3 суток. Фосфор открыл Н. Брандт в 1669 г. Первоначально его получали из мочи животных. В 1771 г. К. Шееле предложил способ получения фосфора из костяной золы.

Среди химических элементов земной коры (литосферы) фосфор занимает 13-е место. Среднее содержание фосфора в земной коре — 0,12%. Благодаря высокой реакционной способности фосфор в свободном состоянии в природе не встречается. Все фосфорсодержащие минералы являются солями ортофосфорной кислоты. Они распространены среди магматических и осадочных пород. В метеоритах фосфор найден также в виде фосфидов железа, никеля и кобальта; поэтому можно полагать, что до появления кислорода на Земле фосфор входил в состав фосфидов металлов.

В соответствии с электронной структурой атома фосфора lS22s22p63s23p3 степень его окисления может меняться от 3"до 5+, однако в наиболее устойчивых его соединениях он проявляет валентность 5+, 3+ иЗ".

Известно большое количество минералов, имеющих в своем составе фосфор. Среди них наиболее распространены апатиты. В торфяниках и болотистых местах довольно часто локально встречается вивианит Fe3(P04)2* 8Н2O. Значительно реже почвообразуюшие породы содержат фосфорсодержащие минералы — торбернит Cu(U02)2(P04)2 * 12Н20, трифилит Li(Fe,Mn)P04, амблигонит LaAI(P04)F.

«Фосфор — "элемент жизни и мысли" — будет нужен человечеству всегда, и это необходимо иметь в виду как сегодня, так и в будущем» (Ферсман, 1983).

Стремление сторонников биологического земледелия обеспечить растения фосфором без применения фосфорных удобрений не имеет реальной основы. Фосфор не случайно назвали «ключом жизни», так как в природе нет таких жизненно важных биохимических процессов, в которых бы он не принимал непосредственного участия. По своей значимости в питании растений, повышении урожайности сельскохозяйственных культур и качества продукции растениеводства фосфор идет следом за азотом, а на торфянистых почвах и черноземах фосфору принадлежит ведущее место.

Важным показателем возрастающей значимости фосфора для человечества может служить его промышленное потребление.

С 1985 по 2005 г. было добыто и использовано 29 млрд т фосфатов, тогда как за предшествующие им 80 лет —около 24 млрд т.

Следует отметить, что в отличие от азота, содержание которого в почве в естественных условиях постоянно пополняется за счет атмосферных осадков и азотфиксируюших микроорганизмов, единственным источником фосфора в почвах являются почвообразующие горные породы. Ведущим фактором, определяющим запасы фосфора в почве, является его содержание в материнской породе.

Фосфор входит в состав минеральных, органических и органо-минеральных соединений почвы.

Условно почвенный фосфор можно разделить на четыре группы:

1) фосфор, содержащийся в почвенном растворе, — фосфат-ионы и растворимые органические фосфорсодержащие соединения;

2) фосфаты, адсорбированные на поверхности почвенных коллоидов;

4) фосфор, входящий в состав органического вещества почвы.

С поливалентными металлами фосфат-ионы образуют широкий спектр слаборастворимых и нерастворимых фосфатов, которые прочно удерживаются в почве на месте их образования и становятся слабо доступными растениям. Формами этих соединений могут быть обменно поглощенные фосфат-ионы, фосфаты, химически прочно связанные на поверхности минеральных и органических коллоидов, аморфные и кристаллические фосфаты (минералы) Са, AI, Fe, Mg, Ti, Pb и др. Непосредственным резервом для растений являются фосфаты, находящиеся в адсорбированном состоянии.

Обменная адсорбция фосфат-ионов происходит на поверхности вторичных глинистых минералов, оксидов железа и алюминия:

Восполнение равновесной концентрации фосфора в почвенном растворе (фосфатная буферность почвы) происходит постоянно за счет как минерализации органического вещества, так и перехода в раствор обменно адсорбированных фосфат-ионов и фосфорных соединений аморфных и кристаллических минералов.

Известно, что ионы H,PO-4 НРО2-4-перемещаются к корням растений в основном в результате диффузии с массовым потоком воды, расходуемой на транспирацию. При низкой влажности почвы передвижение фосфора к корням протекает особенно медленно и может лимитировать потребление его растениями. Поэтому слаборастворимые фосфорные удобрения для повышения их доступности растениям должны быть равномерно распределены во влажном слое почве.

Фосфор, содержащийся в органическом веществе почвы, может быть доступен растениям только после ферментативного гидролиза его микроорганизмами, а так как значительная часть фосфора входит в органические соединения, для его минерализации необходимо полное разложение фосфорсодержащего органического вещества. Процесс этот не специфичен и может осуществляться многими видами микроорганизмов.

Органическое вещество почвы оказывает также большое косвенное влияние на доступность фосфора растениям благодаря способности гуминовых и фульвокислот образовывать недиссоциируемые комплексы (хелаты) с катионами двух- и трехвалентных металлов:

В результате хелатирования катионов поливалентных металлов их концентрация в почвенном растворе снижается и параллельно уменьшается образование нерастворимых соединений фосфора с металлами. Кроме того, кислоты, высвобождающиеся при разложении органического вещества почвы и растительных остатков, заметно повышают растворимость фосфатов кальция. Во всех почвах без исключения с увеличением содержания органического вещества существенно возрастает доступность фосфора растениям. Поэтому, чтобы фосфор нерастворимых удобрений сделать более доступным, их вносят в почву вместе с органическими удобрениями.

ФОСФОР В РАСТЕНИЯХ

Фосфор входит в состав органических и минеральных соединений растений. Соотношение органического и неорганического фосфора в растениях зависит от биологических особенностей культур, возраста и обеспеченности растений фосфором. В молодых органах растений доля органического фосфора всегда выше (90—95%), чем в старых (60—70%). При этом с повышением уровня обеспечения растений фосфором доля нерастворимых неорганических фосфатов в старых органах растений возрастает. Важно отметить, что даже при сильном дефиците фосфора небольшая его часть в растениях остается в резерве в неорганической форме. Основной резервной формой фосфора в растениях, и прежде всего в их репродуктивных органах (семенах), является фитин — кальций-магниевая соль фитиновой кислоты. Содержание общего фосфора в основных сельскохозяйственных культурах представлено в табл. 1.

Фосфор входит также в состав различных коферментов и простатических групп. Ключевая роль в обмене веществ как хранителю и носителю энергии принадлежит аденозинтрифосфату (АТФ). Благоlаря расщеплению богатых энергией триполифосфатных макроэргических связей высвобождается энергия, необходимая для синтеза углеводов, белков, жиров и т.д., или запасается энергия фотосинтеза, освобождающаяся в процессе распада органических веществ.

Таблица 1. Содержание фосфора в растениях


ФОСФОРНОЕ ПИТАНИЕ РАСТЕНИЙ

Основным источником фосфорного питания растений являются анионы ортофосфорной кислоты Н2Р0-4 и HPO2-4, содержащиеся в почвенном растворе. Присутствие определенного количества анионов Р03-4 в слабощелочных почвах, с одной стороны, не имеет весомого значения для питания растений в силу низкой концентрации и малой подвижности Р03-4 из-за высокой плотности заряда. С другой стороны, при адсорбции Р03-4 на поверхности клеточной стенки корня, имеющей в приграничной зоне, как правило, слабокислую или нейтральную среду, фосфат-ион, присоединяя ион водорода, превращается в одновалентный дигидрофосфат-ион:

Поэтому, в какой бы форме ни находились фосфат-ионы в почвенном растворе, поступают они в клетки растений в основном в виде одновалентного аниона H2РО-4.

Наряду с анионами ортофосфорной кислоты (Н3РO4), установлена возможность поступления в растения анионов пирофосфорной (дифосфорной) кислоты (Н4Р207), однако какого-либо практического значения в фосфорном питании растений дифосфаты не имеют, поскольку анионы пирофосфорной и полифосфорных (Нn+2Рn03n+1) кислот в естественных условиях практически не существуют.

В сильнокислых растворах (при рН < 3) преобладает Н3Р04, а в сильнощелочных растворах (при рН >10) — ион Р04-3, однако их доля при рН, равном от 4 до 9, незначительна. В зависимости от реакции среды анионы фосфорной кислоты могут существовать в растворе в виде:

Растения потребляют в основном ионы фосфора из почвенного раствора, поэтому для оценки плодородия почв и состояния питания растений общее содержание фосфора в почве имеет менее важное значение, чем количество в ней лабильных фосфатов.

Следует учитывать, что поведение фосфат-ионов в почвенном растворе существенно отличается от их поведения в обычных питательных растворах. Критическая концентрация фосфора, лимитирующая скорость поглощения его растениями, в почве более высокая, чем в питательном растворе. Эти различия можно объяснить небольшим объемом и размером поперечного сечения пленочной воды на границе корня и почвы, препятствующей диффузии ионов и свободному перемещению воды в почве, что приводит к местному истощению фосфора у поверхности корней.

Можно полагать, что если бы содержание фосфора в почвенном растворе не восполнялось за счет его более значительных запасов в твердой части почвы, то растения в период интенсивного роста за 2-3 дня полностью исчерпали бы фосфор почвенного раствора. Отсюда следует, что уровень обеспеченности растений фосфором в значительной мере определяется скоростью десорбции рыхлосвя-занных фосфатов твердой фазы в почвенный раствор. Потребление фосфора растениями зависит также от скорости его диффузии в почвенном растворе к поверхности корня, транспорта Н2Р04- через мембрану клетки и интенсивности его включения в метаболические процессы.

Когда концентрация фосфат-ионов в почвенном растворе достигает равновесного состояния с твердой фазой, уменьшение его содержания в твердой фазе прекращается до тех пор, пока потребление фосфора растениями не вызовет смещение равновесия за счет снижения концентрации фосфат-ионов в растворе. Оптимальным можно считать такое состояние равновесия, когда скорость высвобождения фосфат-ионов твердой фазой почвы в почвенный раствор соответствует скорости их поглощения растениями.

Исследованиями установлено, что при оптимальной влажности почвы растения не испытывают фосфорного голодания при концентрации фосфора в почвенном растворе более 0,2 мг/л.

О скорости поглощения фосфора растениями из почвы можно судить по увеличению его содержания в биомассе растений за определенный промежуток времени. В связи с тем что содержание фосфора в почвенном растворе никогда не бывает высоким и его содержание в нем достаточно для питания растений лишь в течение 2—3 дней, в период интенсивного роста растений в большинстве случаев потребление ими фосфора количественно соответствует скорости десорбции фосфатов из твердой фазы почвы.

Большинство сельскохозяйственных культур за период вегетации потребляют из каждого гектара почвы 20—40 кг фосфора (Р205). Поэтому степень удовлетворения растений фосфором будет зависеть не от первоначального содержания его в растворе, а от способности почвы восполнять и поддерживать концентрацию фосфатов в почвенном растворе в течение всей вегетации.

Передислокация фосфора в силу диффузии и/или с массовым потоком связана с содержанием воды в почве, которая обеспечивает в тяжелой почве более эффективный перенос фосфора из твердой фазы почвы к корням растений, чем легкой почвой. Вода, поглощаемая растениями при транспирации, служит основным средством перемещения и доставки фосфора и других элементов питания к корневой системе. Вода занимает примерно 20—30% объема суглинистой почвы, 10—20% — супесчаной и полностью не покрывает активной зоны поглощения корней, которые, вследствие постоянного роста, проникают сквозь почву и, благодаря корневым волоскам, осваивают новые участки почвы с более высоким содержанием фосфат-ионов.

Следует отметить, что концентрация фосфора в растворе имеет неодинаковое значение для растений в разных почвах. Легкие почвы удерживают меньше воды, чем тяжелые; отсюда при равной доле влаги (% от НВ) и одинаковой концентрации фосфат-ионов в почвенном растворе общее количество фосфора в жидкой фазе легких песчаных почв значительно меньше, чем тяжелых. Поэтому при равной концентрации фосфора в почвенных растворах растения лучше обеспечены им в тяжелых почвах по сравнению с более легкими.

При недостатке фосфора растения плохо растут, их листья становятся мелкими, темно-зелеными с голубоватым оттенком, а прожилки листьев часто имеют красно-фиолетовую антоциановую окраску.

Признаки фосфорного голодания становятся особенно хорошо заметны в холодную погоду — сначала на старых, а затем и на молодых листьях особенно хорошо они видны на кукурузе, свекле, злаках, ягодных культурах и др. Со временем по краям листьев появляются желто-бурые, затем темно-бурые пятна. У зерновых культур при недостатке фосфора стебель становится грубым и деревянистым, листья — мелкими, расположенными почти вертикально. У капустных вдоль жилок нижних (старых) листьев появляется багрянцевая окраска. При недостатке фосфора нижние листья томата, а затем и все остальные приобретают красно-фиолетовый оттенок. Цветение и созревание у всех растений заметно задерживаются. Значительно снижается размер и количество плодов, колосков в колосе, а следовательно, и урожай.

В отличие азота, соединения которого неустойчивы в почве и легко теряются в результате денитрификации и вымывания, большая часть фосфорных соединений в почве нерастворима и практически из нее не вымывается. Слабая растворимость фосфорсодержащих минеральных и органических соединений является основной причиной шиком доступности фосфатов почвы и удобрений растениям. Поэтому одной из важнейших задач агрохимии фосфора является разработка приемов повышения доступности фосфатов почвы растениям.

ФОСФОРНЫЕ УДОБРЕНИЯ

Фосфорные удобрения являются важнейшим средством повышения урожайности сельскохозяйственных культур и качества продукции. Еще издавна древние народы в качестве фосфорного удобрения применяли измельченные кости. Во второй половине XVIII в. в Англии и Шотландии уже существовали фабрики по размолу костей животных на удобрение. Впервые промышленное производство фосфорных удобрений (суперфосфата) путем обработки костяной муки серной кислотой было начато в Англии в 1843 г. Д.Б. Лоозом (1814— 1900). Было установлено, что в результате обработки природных фосфоритов серной кислотой образуются доступный растениям водорастворимый дигидрофосфат кальция Са(Н2Р04)2 . Н,0 и гипс. Этот принцип получения простого суперфосфата используют до настоящего времени во всех странах.

Фосфорные удобрения принято подразделять на три группы: растворимые в воде; слаборастворимые в воде, но растворимые в слабых кислотах (цитратнорасторимые); растворимые лишь в сильных кислотах.
К первой группе относятся простой, двойной суперфосфат и суперфос, получаемые промышленным путем из апатита или фосфорита, в которых большая часть фосфора представлена водным и/или безводным дигидрофосфатом (однозамешенным фосфатом) кальция — Са(Н,Р04),. К цитратнорасторимым (слаборастворимым) фосфорным удобрениям относятся промышленные удобрения — преципитат, обесфторенный фосфат, термофосфаты, активированные фосфаты и отходы металлургической промышленности (шлаки). Фосфор в этих удобрениях представлен в основном двухзамещенными фосфатами кальция (CaHP04, CaNaP04). тетракальцийфосфатом Са4Р209, октакальцийфосфатом Са4Н(Р04)3 и др.

Большинство технологических процессов получения фосфорсодержащих удобрений базируются на обработке апатитового и фосфоритового концентрата серной, фосфорной или азотной кислотой (мокрый способ), которые разрушают исходную структуру природного апатита (трикальцийфосфата), переводя его в растворимый дигидрофосфат кальция Са(Н2Р04)2 . Н20. В настоящее время 75—80% фосфорных удобрений в мире получают обработкой фосфорита или апатита серной или фосфорной кислотой, 15—20% приходится на обработку азотной кислотой и примерно 5% удобрений получают путем механической (фосмука) или термической обработки фосфатного сырья.

Деление фосфорных удобрений по их растворимости не во всех случаях отражает их удобрительную ценность, а хорошая растворимость фосфорных удобрений не всегда бывает их преимуществом. В щелочных карбонатных и сильнокислых почвах часто умеренно растворимые фосфорные удобрения более эффективны, чем хорошо растворимые, так как последние довольно быстро ретроградируются в труднорастворимые фосфаты.

Изменяя размеры гранул (частиц) фосфорных удобрений, можно в определенной мере регулировать растворимость и взаимодействие фосфора с почвой. Крупные гранулы растворяются медленно, и содержащийся в них фосфор меньше фиксируется почвой. Для снижения фиксации фосфора в почве все легкорастворимые фосфорные и фосфорсодержащие комплексные удобрения гранулируют, а для повышения растворимости труднорастворимых фосфорных удобрений их переводят в порошковидное состояние и тщательно перемешивают с почвой.

Самым простым и дешевым методом получения фосфорного удобрения является измельчение предварительно отделенного от пустой породы природного фосфорита. При этом не требуется каких-либо других материальных затрат. Поэтому применение I т Р205в виде фосфоритной муки примерно в 2—3 раза дешевле, чем суперфосфата.

Фосфоритную муку можно использовать на кислых почвах при их гидролитической кислотности выше 2,5 мг-экв/100 г. На нейтральных и карбонатных почвах растения не могут усваивать фосфор фосфоритной муки.

Применение фосфоритной муки в качестве удобрения имеет давнюю историю. Во Франции и Германии в 1860-х гг. фосфориты широко применялись для улучшения кислых земель. В России фосфоритную муку в качестве удобрения впервые использовал в 1860— 80-х гг. один из крупных русских агрохимиков А.Н. Энгельгардт (1832—1893). Полевые опыты, проведенные им на кислых дерново-подзолистых почвах Смоленской губернии, показали, что внесение фосфоритной муки значительно повышает урожайность клевера, озимой ржи и многих других культур.

Большая потребность многих почв России в фосфоре и дефицит растворимых фосфорных удобрений стали важным стимулом научного поиска эффективной замены промышленных фосфорных удобрений природными фосфоритами, проведенного сотрудниками лаборатории Д. Н. Прянишникова.

Необходимо отметить, что применение фосфоритной муки в качестве удобрения после успешных опытов А.Н. Энгельгардта и Д.И. Менделеева не получило широкого распространения из-за их противоречивых результатов, так как в те годы теория кислотности почв еще не была разработана, неизученными оставались вопросы химии почв и их поглотительной способности. Все это не позволило дать правильного объяснения причин действия фосфорита и спрогнозировать эффективность его применения. В работах К.К. Гедройца было установлено существование гидролитической кислотности почв, на основании которой определяют действие фосфоритной муки.

Профессором кафедры агрохимии ТСХА Б.А. Голубевым (1893— 1952) был предложен надежный метод прогнозирования эффективности использования фосфоритной муки по величине гидролитической кислотности почвы, который широко используется в агрохимической практике и сегодня.

Фосфоритная мука довольно медленно растворяется в почве, поэтому она действует не сразу, а используется растениями постепенно. По этой причине ее не применяют при посеве или в виде подкормки сельскохозяйственных культур. Все это вызывает необходимость, несмотря на большие технологические затраты, производить универсальные растворимые фосфорсодержащие удобрения во всех странах.

В отличие от растворимых фосфорных удобрений (например суперфосфата), доступность фосфора которых после их внесения со временем значительно снижается на кислых и карбонатных почвах, использование растениями фосфора фосфоритной муки в кислых почвах может в последующие 2—3 года повышаться. В этой связи фосфоритную муку вносят обычно в относительно больших количествах (200—400 кг на 1 га) в целях повышения содержания подвижного фосфора в почве и длительных последействий.

Доминирующее положение в производстве растворимых фосфорсодержащих удобрений занимает фосфорная кислота. В 2011 г. более 60% растворимых фосфорсодержащих удобрений в мире получали обработкой фосфоритов и апатитов фосфорной кислотой. Универсальность этой кислоты при получении односторонних фосфорных удобрений (например, двойного суперфосфата) и многих комплексных удобрений способствует постоянному расширению объемов ее использования.

Экстракционную фосфорную кислоту получают при обработке тонкоизмельченного фосфорита или апатита необходимым количеством серной кислоты и последующем отделении фосфогипса.

Из промышленных растворимых фосфорных удобрений наибольшее распространение получили простой и двойной суперфосфат, а в последние годы — суперфос и др.

Суперфосфат является первым промышленным удобрением. Идея получения растворимого фосфорного удобрения связана с именем Ю. Либиха, который в 1840 г. предложил обрабатывать кости животных серной кислотой.

Двойной суперфосфат. Концентрированный (двойной) суперфосфат получают так же, как и простой суперфосфат, но вместо серной кислоты апатитовый или фосфоритовый концентрат обрабатывают фосфорной кислотой, которую производят в смежных цехах или на других химических предприятиях.

В России концентрированный суперфосфат называется двойным, в большинстве других стран — тройным.

Эффективность действия суперфосфата, как и других фосфорных удобрений, в значительной мере обусловлена направленностью процессов трансформации фосфатов в почве. При внесении суперфосфата в почву дигидрофосфат кальция растворяется и частично гидролизуется с образованием гидрофосфата кальция и фосфорной кислоты.

В результате выделения Н,Р04 в окружающую среду происходит локальное подкисление почвы, примыкающей к грануле. Степень подкисляющего действия суперфосфата на почву зависит от дозы удобрения, химического и гранулометрического состава почвы. Сильное локальное подкисление почвы вблизи расположения частиц удобрения значительно повышает растворимость гидроксидов железа и алюминия (Fc.AKOH),), которые образуют с фосфорной кислотой нерастворимые фосфаты железа и алюминия (Fe, A1P04). По мере увеличения расстояния от гранулы удобрения и нейтрализации фосфорной кислоты раствор становится менее кислым. В этих условиях преобладающими продуктами реакции гидроксидов железа и алюминия с фосфорной кислотой могут быть наиболее растворимые стренгит (Fc(OH)2H2P04) и варисцит(А1(ОН)2Н2Р04). В дальнейшем при рН >5 в почвенном растворе будут преобладать и участвовать в образовании различных фосфатов ионы Н2РО-4 и НРО2-4.

Таким образом, содержащаяся в суперфосфате фосфорная кислота в кислых почвах способствует химическому закреплению вносимого в них фосфора в форме труднорастворимых фосфатов алюминия и железа. Поэтому нейтрализация почвы путем известкования будет способствовать повышению эффективности суперфосфата. Систематическое применение суперфосфата не вызывает заметного подкисления почвы, так как фосфорная кислота быстро взаимодействует с гидроксидами железа и алюминия.

Суперфосфат — универсальное удобрение, его применяют на всех почвах в качестве основного и припосевного (припосадочного) удобрения. Внесение его поверхностно в качестве подкормки растений без глубокой заделки в почву малоэффективно, так как фосфор не перемещается в почве (кроме песчаных), ареал его диффузии не превышает 1—3 см в год, поэтому для корневой системы растений он будет пространственно недоступен. Это особенно важно для молодых растений, возделываемых на почвах, бедных фосфором, когда их корневая система еше не развита, а также в зоне недостаточного увлажнения.

Гранулирование (размер гранул 2-4 мм) суперфосфата позволяет уменьшить его контакте почвой и скорость его растворения и повысить его доступность растениям. Все суперфосфаты содержат небольшие количества микроэлементов (Zn, Mn, Си, Мо), присутствующих в фосфатных рудах.

Растворимые фосфорные удобрения более эффективны при их локальном внесении в почву (концентрированными лентами или полосами), чем при смешивании со всем объемом пахотного слоя, поскольку быстрая диффузия фосфат-ионов в среду, окружающую

Гранулы растворимых удобрений, сопровождается их последующим осаждением в менее растворимых формах. Перемешивание растворимых фосфорных удобрений с почвой значительно ускоряет процессы ретроградации фосфатов, в результате чего снижается их доступность растениям.

Цитраторастворимые фосфорные удобрения. Преципитат получают осаждением экстракционной фосфорной кислоты известковым молоком:

H3P04 + Ca(OH)2 -> СаНР04- 2Н20

В преципитате содержится до 38—42% Р2O5 в форме гидрофосфата кальция CaHPO4 * 2Н20. Он слаборастворим в воде, но растворим в органических и минеральных кислотах, поэтому фосфор из него довольно хорошо усваивается растениями. На кислых почвах преципитат переходит в растворимый дигидрофосфат:

2СаНР04+2Н2СO3 -> Са(Н2Р04)2+Са(НСO3)2

Преципитат — негигроскопичный порошок светло-серого цвета. Он практически не слеживается. При внесении преципитата до посева в качестве основного удобрения его эффективность сопоставима с эффективностью суперфосфата.

Термофосфаты. К термофосфатам относятся удобрения, получаемые при прокаливании (или плавлении) природных апатитов и фосфатов с различными твердыми веществами (содой, карбонатами и силикатами магния и кальция и др.), а также отходы металлургии, содержащие фосфор. При высокой температуре (1200-1500 °С) происходит разрушение кристаллической структуры апатита и внедрение в нее катионов из добавленных солей, в результате чего образуются более растворимые фосфорные соединения. Производство термофосфатов имеет большое значение для стран, не имсюших месторождений серы. Оно позволяет избежать применения серной кислоты при производстве фосфорных удобрений. По мере удорожания сырьевых ресурсов, используемых при производстве кислот, термофосфаты найдут широкое применение в сельском хозяйстве.

Промышленное производство термофосфатов путем сплавления апатита с сульфатом магния впервые было налажено в Германии и Польше в 1948 г. В настоящее время существует несколько способов термической переработки апатита и фосфорита в удобрения: гидротермическое обесфторивание; сплавление с кремнеземом (кварцевым песком) и содой; плавление с силикатами и/или сульфатами магния и/или калия; спекание с оксидами щелочных и/или щелочно-земельных металлов и др.

Основным отличием (недостатком) всех слаборастворимых фосфорных удобрений (термофосфатов, преципитата, металлургических шлаков и др.) от растворимых фосфорсодержащих удобрений (суперфосфата, комплексных удобрений) является довольно медленный переход их фосфатов в растворимую, доступную для растений форму непосредственно после внесения в почву. Полому применение их до посева (посадки) не может полностью обеспечить высокую потребность в фосфоре молодых, интенсивно растущих сельскохозяйственных культур на почвах с низким содержанием подвижных фосфатов.

Обесфторенный фосфат получают путем обработки расплавленного апатита или фосфорита при температуре 1400—1500 °С водяным паром и 2-5% кварцевого песка. В результате взаимодействия водяного пара и кремнезема с расплавленным фтораиатитом из нею удаляются почти весь фтор, мышьяк, ртуть, цинк, кадмий, а в расплаве в зависимости от технологического режима образуются преимущественно трикальцийфосфат, гидрофосфат и силикат кальция.

Его производят во вращающихся наклонных цилиндрических печах, используемых в цементной промышленности. После охлаждения расплава его дробят и размалывают на шнековых мельницах. Обесфторенный фосфат — серый порошок, содержащий 28—32% Р205 и 0,02—0,2% фтора. Используют его в животноводстве при приготовлении комбикормов и в растениеводстве в качестве основного удобрения.

Термофосфат щелочной получают при спекании апатита или фосфата с содой и кварцевым песком во вращающихся печах при 1200— 1300 °С. При этой температуре происходит взаимодействие апатита с содой и диоксидом кремния с образованием натрийкальцийфосфата и силиката кальция.

Щелочной термофосфат содержит 26—28% цитраторастворимого фосфора (Р205), а также небольшие количества микроэлементов. Выпускают его в виде порошка. Тонкоразмолотый фосфат трудно вносить, так как он сильно пылит и легко слеживается. Для устранения этого недостатка в последние годы разработан способ получения рыхлых гранул размером 1—2 мм. Они быстро растворяются в почве, и их фосфор используется растениями. По сравнению с порошковидным (пылящим) гранулированный щелочной фосфат (не пылящий) на нейтральных и щелочных почвах в первый год внесе ния действует несколько хуже, однако впоследствии превосходит его. На кислых почвах эффективность порошковидного и рыхлограну-лированного термофосфата примерно одинакова. Если подвижный фосфор в нейтральных и карбонатных почвах обеспечивает потребность в нем растений в начале роста, то термофосфаты дают такие же прибавки урожая, как и растворимые фосфорные удобрения, а на сильнокислых почвах благодаря содержанию активных оснований и кремниевой кислоты, образующихся при гидролизе силикатов и фосфатов, термофосфат превосходит суперфосфаты:

NaCaP04+ 2Н20 -> NaOH + СаНР04

Ca2Si04 + 2Н2O -> 2Са(ОН)2 + H4Si04

Основания Са(ОН), и NaOH локально нейтрализуют кислотность почвы и тем самым препятствуют образованию малодоступных растениям фосфатов железа и алюминия, а гелеобразная кремниевая кислота адсорбируется на поверхности глинистых минералов, аморфных оксидов железа и алюминия или химически связывает растворимые формы железа и алюминия и тем самым уменьшает фиксацию ионов фосфатов:

ЗА1(ОН)3 + 2H4Si04 -> Al3(Si04)2

3Fe(0H)3 + 2H4Si04 -> Fe3(Si04)2

Кроме того, кремниевая кислота препятствует кристаллизации свежеосажденных фосфатов и превращению их в гидроксилапатит и карбонатапатит. По этой причине термофосфаты обладают широким диапазоном действия и могут применяться на кислых, нейтральных и щелочных почвах, если они не особенно бедны фосфором.

Металлургические шлаки (томасшлак, доменные и мартеновские шлаки). Присутствие в стали фосфора и кремния значительно ухудшает ее свойства (прочность, коррозионную стойкость, ковкость и др.). Для связывания фосфора и других вредных примесей при производстве и переработке чугунов, богатых фосфором, в сталь, шихту (смесь необходимых компонентов плавки) или расплавленный при температуре 1400—1500 °С металл добавляют СаО (флюс). Получаемые побочные продукты металлургии — шлаки содержат 5—20% Р205 и 50-60% СаО и являются ценным фосфорным и известковым удобрением. Свое название шлаки получили в зависимости от металлургического процесса, в котором их получают. Различают шлаки доменные (5—10% Р205), являющиеся отходами производства чугуна, и сталеплавильные — мартеновские, бессемеровские, томасовские и др. Мартеновские шлаки (7—12% Р205) получили название по имени французского металлурга Б.Мартена, предложившего в 1864 г. печной метод переработки чугуна в сталь, томасшлаки (12—20% Р205) — по имени английского инженера С. Томаса, в 1879 г. предложившего конвертерный (ковшевый) способ. Наряду с фосфором и кальцием, шлаки содержат: MgO — 2—4%; МпО — 1—3; Si02 — 6—8; А 1,0,— 1—2%, 20—70 мг/кг бора, 10—60 мг/кг меди; 5—10 мг/кг молибдена и 2—5 мг/кг кобальта.

Металлургические шлаки представляют собой порошок темного цвета, в котором фосфор находится в форме цитраторастворимого тетрафосфата кальция Са4Р209 и силикокариотита Ca5(P04)2 Si04. Присутствие в шлаках Ca,Si04 и CaSiO, препятствует ретроградации фосфатов в почве из-за образования при гидролизе силикатов кальция H4Si04H Са(ОН),. По усвояемости растениями фосфаты шлаков близки к преципитату. Действуют они относительно медленно, поэтому необходимо вносить их заблаговременно. Особенно рационально внесение шлаков под многолетние плодовые насаждения, бобовые и злаковые травы (люцерну, клевер, люпин, кострец и др.), так как здесь требуется не быстрое начальное, а длительное действие удобрений.

Термофосфаты и шлаки оказывают многостороннее благоприятное влияние на питание растений — они действуют не только как фосфорное, но и как известковое удобрение, содержащее магний и микроэлементы. На кислых почвах они превосходят суперфосфаты а на нейтральных и щелочных почвах термофосфаты уступают суперфосфату. На почвах, хорошо обеспеченных фосфором, разница в действии значительно нивелируется.

Следует отмстить, что до настоящего времени пути трансформации термофосфатов в почве детально не изучены, однако можно полагать, что в конечном итоге образуются такие же фосфаты Са, Fe и А1 и примерно в таком же соотношении, как при внесении растворимых фосфатов, а их соотношения и формы зависят прежде всего от почвенных условий.

ВНЕСЕНИЕ ФОСФОРНЫХ УДОБРЕНИЙ

Хорошая обеспеченность растений элементами питания, и прежде всего фосфором, в начале роста позволяет молодым растениям за короткий период создать довольно мошную корневую систему, что помогает им в дальнейшем лучше использовать питательные вещества почвы и удобрений.

Дробление на части вносимой дозы фосфора (кроме припосевного) даже на легких почвах не дает какого-либо преимущества перед разовым внесением всей дозы. Сроки внесения комплексных фосфорсодержащих удобрений следует определять исходя из потребности растений в азоте.

Хозяйства с высоким уровнем химизации земледелия вместо ежегодного внесения фосфорных удобрений под отдельные культуры севооборота могут вносить суммарное их количество «в запас» — один раз в 2—3 года. Вносить удобрения в запас на более длительный период не следует в связи со снижением подвижности фосфатов в почве со временем и уменьшением доступности фосфора растениям. Поэтому через 2—3 года повторно вносят фосфорные удобрения в запас. Основное внесение фосфорных удобрений чаше всего сочетают с внесением калийных удобрений с последующей их заделкой плугом без предплужника при осенней вспашке. Внесение фосфора в запас не следует проводить лишь на песчаных почвах.

Кроме того, при внесении высоких доз фосфорных удобрений доля фиксированного фосфора снижается, вследствие чего повышается степень его использования растениями.

Внесение фосфорных удобрений в запас практически не увеличивает затраты фосфора зерновыми культурами на создание урожая по сравнению с ежегодным внесением и обеспечивает снижение затрат труда и техники. Наиболее рационально фосфорные удобрения вносить в запас под пропашные и кормовые травы.

В то же время в сложившихся экономических условиях в сельском хозяйстве России наиболее эффективным приемом применения ограниченных ресурсов фосфорных удобрений является внесение их при посеве (посадке) сельскохозяйственных культур.

Способы внесения фосфорных удобрений. Способы внесения фосфорных удобрений зависят от их формы. Оптимальные способы внесения растворимых (например, суперфосфата) и нерастворимых (например, фосфоритной муки) фосфорных удобрений различны. Растворимые фосфорные удобрения можно вносить вразброс с последующей заделкой в почву плугом с предплужником, локально — вместе с семенами при посеве (посадке), лентами, полосами, рядками вблизи семян или более глубоко в пахотный слой почвы. При локальном припосевном внесении фосфорные удобрения размещаются в непосредственной близости от слаборазвитых корней молодых растений и таким образом обеспечивают их доступным фосфором, что особенно важно в начале развития растений.

Первостепенной технологической задачей производства и применения растворимых фосфорных и фосфорсодержащих комплексных удобрений является уменьшение их взаимодействия (контакта) с твердой частью почвы в целях предотвращения интенсивного образования слаборастворимых фосфатов.

Благодаря гранулированию растворимых фосфорных удобрений и их локальному размещению в почве значительно ограничивается фиксация фосфора, вследствие чего достигается лучшее использование его растениями.

Существенное преимущество локального применения растворимых фосфорных удобрений по сравнению с разбросным их внесением наблюдается в следующих случаях:

При ограниченной обеспеченности почв фосфорными удобрениями, достаточной лишь для припосевного (прииосадочиого) внесения. В этом случае локальное размещение удобрений (10— 15 кг Р205 на 1 га) недалеко от семян способствует интенсивному начальному росту и развитию растений благодаря высокому содержанию доступного фосфора в непосредственной близости от молодых корней. При рядковом внесении фосфорные удобрения должны размещаться по возможности несколько ниже (на 2—3 см) высеянных семян;

При перемешивании небольшого количества фосфорных удобрений со всем пахотным слоем, в результате чего фосфор быстро фиксируется почвой. В то же время повышение дозы припосевного удобрения до 20 кг Р2O5 на га значительно снижает окупаемость фосфора, а при более высоких дозах фосфора эффективность его припосевного внесения ниже, чем разбросного с заделкой плугом;

На кислых слабоокультуренных дерново-подзолистых почвах и красноземах, содержащих большое количество растворимых форм железа и алюминия. В этих условиях при локальном внесении фосфорных удобрений в зоне их расположения длительное время сохраняется высокая концентрация растворимого фосфора, что обеспечивает растениям наилучшее фосфорное питание;

В степных районах, где неблагоприятные погодные условия, и прежде всего засуха, ограничивают растворимость фосфорных удобрений и диффузию фосфат-ионов к корням. Преимущество глубокой заделки фосфорных удобрений в степной зоне связано с тем, что в нижней части пахотного слоя почва дольше сохраняет влагу, в ней находится основная масса деятельных корней и даже в засушливые годы фосфор сохраняется в усвояемой растениями форме;

При выращивании культур со слаборазвитой корневой системой (например, лука) и культур с коротким периодом вегетации (редиса, зеленных культур и др.), требующих частых поливов. Неглубокое ленточное размещение фосфора в пахотном слое почвы (на глубине 12-15 см) обеспечивает лучшую доступность его растениям, чем разбросное внесение удобрений, при котором удобрения рассосредоточены в пахотном слое почвы, а в зоне роста корней в начале развития растений находится слишком малодоступного фосфора. Ленточное внесение фосфорных удобрений на нужную глубину пахотного слоя почвы достигается при заделке их специальными сошниками.

Разбросное внесение удобрений более важно для культур с хорошо развитой корневой системой (многолетние травы, подсолнечник, капуста), требующих большой площади питания.

Слабо- и труднорастворимые фосфорные удобрения (фосфоритная мука, термофосфаты, металлургические шлаки), которые лишь при взаимодействии с почвой трансформируются в более растворимые, доступные растениям соединения, для улучшения контакта с ППК необходимо хорошо перемешивать с почвой. Особенно это важно для фосфоритной муки, применение которой без тщательного перемешивания с почвой значительно снижает ее эффективность в год внесения.

Следует отметить, что растения также способны поглощать элементы питания через листья и другие надземные органы. Скорость их поглощения отдельными культурами различна и в значительной мере зависит от морфологического строения листьев и химической природы элементов питания. Поглощение фосфат-ионов растениями через листья происходит иногда быстрее, чем через корни, и завершается в среднем через 2—3 дня. Наиболее пригодны для этой цели фосфаты аммония NH4H2P04, магния MgHP04 и калия КН,Р04. Поэтому, казалось бы, чтобы избежать значительного закрепления фосфора в почве и повысить коэффициент его использования растениями, целесообразно растворимые фосфорные удобрения вносить в виде некорневых подкормок. При этом, так как высокая концентрация растворов вызывает сильное повреждение (ожоги) листьев, при некорневых подкормках могут быть использованы только разбавленные (0,1—0,2%) растворы фосфорных удобрений . Для удовлетворения потребности растений в фосфоре при такой низкой концентрации растворов в течение вегетации необходимо проводить 10—20 некорневых подкормок, что требует больших затрат, а значит, экономически не оправдано. Более того, можно проводить некорневые подкормки лишь вегетирующих растений, т.е. когда растения уже образовали достаточно развитый листовой аппарат. При этом потребность растений в фосфоре наиболее велика в начале их роста и развития. В этой связи некорневые подкормки фосфором и другими элементами питания могут являться лишь дополнительной подкормкой.

Роль элементов в жизни растений -

Азот

Азот - один из основных элементов, необходимых для растений. Он входит в состав всех белков (содержание его колеблется от 15 до 19%) нуклеиновых кислот, аминокислот, хлорофилла, ферментов, многих витаминов, липоидов и других органических соединений, образующихся в растениях. Общее содержание азота в растении составляет 0,2 - 5 % и более массы воздушно - сухого вещества.

В свободном состоянии азот является инертным газом, которого в атмосфере содержится 75,5 % ее массы. Однако в элементарной форме азот не может усваиваться растениями, за исключением бобовых, которые используют азотные соединения, вырабатываемые развивающимися на их корнях клубеньковыми бактериями, способными усваивать атмосферный азот и переводить его в доступную для высших растений форму.

Азот поглощается растениями только после соединения его с другими химическими элементами в форме аммония и нитратов - наиболее доступных форм азота в почве. Аммоний, являясь восстановленной формой азота, при поглощении растениями легко используется в синтезе аминокислот и белков. Синтез аминокислот и белков из восстановленных форм азота происходит быстрее и с меньшими затратами энергии, чем синтез из нитратов, для восстановления которых до аммиака растению необходимы затраты дополнительной энергии. Однако нитратная форма азота более безопасна для растений, чем аммиачная, так как высокие концентрации аммиака в тканях растений вызывают их отравление и гибель.

Аммиак накапливается в растении при нехватке углеводов, которые необходимы для синтеза аминокислот и белков. Дефицит углеводов в растениях наблюдается обычно в начальный период вегетации, когда ассимиляционная поверхность листьев не развилась еще настолько, чтобы удовлетворить потребность растений в углеводах. Поэтому аммиачный азот может быть токсичен для культур, семена которых бедны углеводами (сахарная свекла и др.). По мере развития ассимиляционной поверхности и синтеза углеводов эффективность аммиачного питания возрастает, и растения усваивают лучше аммиак, чем нитраты. В начальный период роста эти культуры должны обеспечиваться азотом в нитратной форме, а такие культуры, как картофель, клубни которого богаты углеводами, могут использовать азот в аммиачной форме.

При недостатке азота замедляется рост растений, ослабляется интенсивность кущения злаковых и цветения плодовых и ягодных культур, сокращается вегетационный период, уменьшается содержание белка и снижается урожай.

Фосфор

Фосфор участвует в обмене веществ, делении клеток, размножении, передаче наследственных свойств и в других сложнейших процессах, происходящих в растении. Он входит в состав сложных белков (нуклеопротеидов), нуклеиновых кислот, фосфатидов, ферментов, витаминов, фитина и других биологически активных веществ. Значительное количество фосфора содержится в растениях в минеральной и органической формах. Минеральные соединения фосфора находятся в виде ортофосфорной кислоты, которая используется растением прежде всего в процессах превращения углеводов. Эти процессы влияют на накопление сахара в сахарной свекле, крахмала в клубнях картофеля и т. д.

Особенно велика роль фосфора, входящего в состав органических соединений. Значительная часть его представлена в виде фитина - типичной запасной формы органического фосфора. Больше всего этого элемента содержится в репродуктивных органах и молодых тканях растений, где идут интенсивные процессы синтеза. Опытами с меченым (радиоактивным) фосфором было установлено, что в точках роста растения его в несколько раз больше, чем в листьях.

Фосфор может передвигаться из старых органов растения в молодые. Особенно необходим фосфор для молодых растений, так как способствует развитию корневой системы, повышает интенсивность кущения зерновых культур. Установлено, что увеличивая содержание растворимых углеводов в клеточном соке, фосфор усиливает зимостойкость озимых культур.

Как и азот, фосфор является одним из важных элементов питания растений. В самом начале роста растение испытывает повышенную потребность в фосфоре, которая покрывается за счет запасов этого элемента в семенах. На бедных по плодородию почвах у молодых растений после расхода фосфора из семян проявляются признаки фосфорного голодания. Поэтому на почвах, содержащих небольшое количество подвижного фосфора, рекомендуется одновременно с посевом проводить рядковое внесение гранулированного суперфосфата.

Фосфор в отличие от азота ускоряет развитие культур, стимулирует процессы оплодотворения, формирования и созревания плодов.

Основным источником фосфора для растений являются соли ортофосфорной кислоты, называемой обычно фосфорной. Корни растений поглощают фосфор в виде анионов этой кислоты. Наиболее доступными для растений являются водорастворимые однозамещенные соли ортофосфорной кислоты: Са (H 2 PO 4) 2 - H 2 O, КН 2 РO 4 NH 4 H 2 PO 4 NaH 2 PO 4 , Mg(H 2 PO 4) 2 .

Калий

Калий не входит в состав органических соединений растений. Однако он играет важнейшую физиологическую роль в углеводном и белковом обмене растений, активизирует использование азота в аммиачной форме, влияет на физическое состояние коллоидов клетки, повышает водоудерживающую способность протоплазмы, устойчивость растений к увяданию и преждевременному обезвоживанию и тем самым увеличивает сопротивляемость растений кратковременным засухам.

При недостатке калия (несмотря на достаточное количество углеводов и азота) в растениях подавляется передвижение углеводов, снижается интенсивность фотосинтеза, восстановления нитратов и синтеза белка.

Калий влияет на образование клеточных оболочек, повышает прочность стеблей злаков и их устойчивость к полеганию.

От калия заметно зависит качество урожая. Недостаток его приводит к щуплости семян, понижению их всхожести и жизненности; растения легко поражаются грибными и бактериальными заболеваниями. Калий улучшает форму и вкусовые качества картофеля, повышает содержание сахара в сахарной свекле, влияет не только на окраску и аромат земляники, яблок, персиков, винограда, но и на сочность апельсинов, улучшает качество зерна, листа табака, овощных культур, волокна хлопчатника, льна, конопли. Наибольшее количество калия требуется растениям в период их интенсивного роста.

Повышенная требовательность к калийному питанию отмечается у корнеплодов, овощных культур, подсолнечника, гречихи, табака.

Калий в растении находится преимущественно в клеточном соке в виде катионов, связанных органическими кислотами, и легко вымывается из растительных остатков. Для него характерно многократное использование (реутилизация). Он легко передвигается из старых тканей растения, где был уже использован, в молодые.

Недостаток калия, так же как и его избыток, отрицательно сказывается на количестве урожая и его качестве.

Магний

Магний входит в состав хлорофилла и непосредственно участвует в фотосинтезе. В хлорофилле содержится магния около 10 % от общего количества его в зеленых частях растений. С магнием также связано образование в листьях таких пигментов, как ксантофилл и каротин. Магний также входит в состав запасного вещества фитина, содержащегося в семенах растений и пектиновых веществ. Около 70 - 75 % магния в растениях находится в минеральной форме, в основном в виде ионов.

Ионы магния, адсорбционно связаны с коллоидами клеток и наряду с другими катионами поддерживают ионное равновесие в плазме; подобно ионам калия, они способствуют уплотнению плазмы, уменьшению ее набухаемости, а также участвуют как катализаторы в ряде биохимических реакций, происходящих в растении. Магний активизирует деятельность многих ферментов, участвующих в образовании и превращении углеводов, белков, органических кислот, жиров; влияет на передвижение и превращение фосфорных соединений, плодообразование и качество семян; ускоряет созревание семян зерновых культур; способствует повышению качества урожая, содержания в растениях жира и углеводов, морозоустойчивости цитрусовых, плодовых и озимых культур.

Наибольшее содержание магния в вегетативных органах растений отмечается в период цветения. После цветения в растении резко снижается количество хлорофилла, и происходит отток магния из листьев и стеблей в семена, где образуются фитин и фосфат магния. Следовательно, магний, подобно калию, может перемещаться в растении из одних органе в другие.

При высоких урожаях сельскохозяйственные культуры потребляют магния до 80 кг с 1 га. Наибольшее количество его поглощают картофель, кормовая и сахарная свекла, табак, бобовые травы.

Самой важной формой для питания растений является обменный магний, составляющий в зависимости от вида почвы 5 - 10 % общего содержания этого элемента в почве.

Кальций

Кальций участвует в углеводном и белковом обмене растений, образовании и росте хлоропластов. Подобно магнию и другим катионам, кальций поддерживает определенное физиологическое равновесие ионов в клетке, нейтрализует органические кислоты, влияет на вязкость и проницаемость протоплазмы. Кальций необходим для нормального питания растений аммиачным азотом, он затрудняет восстановление в растениях нитратов до аммиака. От кальция в большей степени зависит построение нормальных клеточных оболочек.

В отличие от азота, фосфора и калия, находящихся обычно в молодых тканях, кальций содержится в значительных количествах в старых тканях; при этом его больше в листьях и стеблях, чем в семенах. Так, в семенах гороха кальций составляет 0,9 % воздушно - сухого вещества, а в соломе - 1,82 %

Наибольшее количество кальция потребляют многолетние бобовые травы - около 120 кг СаО с 1 га.

Недостаток кальция в полевых условиях отмечается на очень кислых, особенно песчаных, почвах и солонцах, где поступление кальция в растения тормозится ионами водорода на кислых почвах и натрия на солонцах.

Сера

Сера входит в состав аминокислот цистина и метионина, а также глутатиона - вещества, содержащегося во всех клетках растений и играющего определенную роль в обмене веществ и в окислительно - восстановительных процессах, так как является переносчиком водорода. Сера - непременный компонент некоторых масел (горчичное, чесночное) и витаминов (тиамин, биотин), она влияет на образование хлорофилла, способствует усиленному развитию корней растений и клубеньковых бактерий, усваивающих атмосферный азот и живущих в симбиозе с бобовыми культурами. Часть серы находится в растениях в неорганической окисленной форме.

В среднем в растениях содержится около 0,2 - 0,4 % серы от сухого вещества, или около 10 % в золе. Больше всего серы поглощают культуры из семейства крестоцветных (капуста, горчица и др.). Сельскохозяйственные культуры потребляют следующее количество серы (кгга): зерновые и картофель - 10 - 15, сахарная свекла и бобовые - 20 - 30, капуста - 40 - 70.

Серное голодание чаще всего наблюдается на бедных органическим веществом супесчаных и песчаных почвах нечерноземной полосы.

Железо

Железо потребляется растениями в значительно меньших количествах (1 - 10 кг с 1 га), чем другие макроэлементы. Оно входит в состав ферментов, участвующих в создании хлорофилла, хотя в него этот элемент не входит. Железо участвует в окислительно - восстановительных процессах, протекающих в растениях, так как оно способно переходить из окисленной формы в закисную и обратно. Кроме того, без железа невозможен процесс дыхания растений, поскольку оно является составной частью дыхательных ферментов.

Недостаток железа ведет к распаду ростовых веществ (ауксинов), синтезируемых растениями. Листья становятся светло - желтыми. Железо не может, как калий и магний, передвигаться из старых тканей в молодые (т. е. повторно использоваться растением).

Железное голодание чаще всего проявляется на карбонатных и сильноизвесткованных почвах. Особенно чувствительны к недостатку железа плодовые культуры и виноград. При длительном железном голодании у них происходит отмирание верхушечных побегов.

Бор

Бор содержится в растениях в ничтожном количестве: 1 мг на 1 кг сухого вещества. Различные растения потребляют от 20 до 270 г бора с 1 га. Наименьшее содержание бора наблюдается в злаковых культурах. Несмотря на это бор оказывает большое влияние на синтез углеводов, их превращение и передвижение в растениях, формирование репродуктивных органов, оплодотворение, рост корней, окислительно - восстановительные процессы, белковый и нуклеиновый обмен, на синтез и передвижение стимуляторов роста. С наличием бора также связаны активность ферментов, осмотические процессы и гидратация плазменных коллоидов, засухо - и солеустойчивость растений, содержание в растениях витаминов - аскорбиновой кислоты, тиамина, рибофлавина. Поглощение растениями бора увеличивает потребление других питательных веществ. Этот элемент не способен передвигаться из старых тканей растений в молодые.

При недостатке бора замедляется рост растений, отмирают точки роста побегов и корней, не раскрываются бутоны, опадают цветки, распадаются клетки в молодых тканях, появляются трещины, органы растений чернеют и приобретают неправильную форму.

Недостаток бора чаще всего проявляется на почвах с нейтральной и щелочной реакцией, а также на известкованных почвах, так как кальций мешает поступлению бора в растение.

Молибден

Молибден поглощается растениями в меньших количествах, чем другие микроэлементы. На 1 кг сухого вещества растений приходится 0,1 - 1,3 мг молибдена. Наибольшее количество этого элемента содержится в семенах бобовых культур - до 18 мг на 1 кг сухого вещества. С 1 га растения выносят с урожаем 12 - 25 г молибдена.

В растениях молибден входит в состав ферментов, участвующих в восстановлении нитратов до аммиака. При недостатке молибдена в растениях накапливаются нитраты и нарушается азотный обмен. Молибден улучшает кальциевое питание растений. Благодаря способности изменять валентность (отдавая электрон, он становится шестивалентным, а присоединяя - пятивалентным) молибден участвует в окислительно - восстановительных процессах, происходящих в растении, а также в образовании хлорофилла и витаминов, в обмене фосфорных соединений и углеводов. Большое значение имеет молибден в фиксации молекулярного азота клубеньковыми бактериями.

При нехватке молибдена растения отстают в росте и снижают урожайность, листья приобретают бледную окраску (хлороз), в результате нарушения азотного обмена теряют тургор.

Молибденовое голодание чаще всего наблюдается на кислых почвах, имеющих рН менее 5,2. Известкование увеличивает подвижность молибдена в почве и потребление его растениями. Особенно чувствительны к недостатку этого элемента в почве бобовые культуры. Под влиянием молибденовых удобрений не только увеличивается урожай, но и улучшается качество продукции - повышается содержание сахара и витаминов в овощных культурах, белка в зернобобовых культурах, протеина в сене бобовых трав и т. д.

Избыток молибдена, как и его недостаток, сказывается на растениях отрицательно - листья теряют зеленую окраску, задерживается рост и снижается урожай растений.

Медь

Медь, как и другие микроэлементы, потребляется растениями в очень малых количествах. На 1 кг сухой массы растений приходится 2 - 12 мг меди.

Медь играет большую роль в окислительно - восстановительных процессах, обладая способностью переходить из одновалентной формы в двухвалентную и обратно. Она является компонентом ряда окислительных ферментов, повышает интенсивность дыхания, влияет на углеводный и белковый обмен растений. Под влиянием меди в растении увеличивается содержание хлорофилла, усиливается процесс фотосинтеза, повышается устойчивость растений к грибным и бактериальным болезням.

Недостаточная обеспеченность растений медью отрицательно сказывается на водоудерживающей и водопоглощающей способности растений. Чаще всего недостаток меди наблюдается на торфяно - болотных почвах и некоторых почвах легкого механического состава.

В то же время слишком высокое содержание в почве доступной для растений меди, как и других микроэлементов, отрицательно влияет на урожай, поскольку нарушается развитие корней и уменьшается поступление в растение железа и марганца.

Марганец

Марганец, как и медь, играет важную роль в окислительно - восстановительных реакциях, протекающих в растении; он входит в состав ферментов, с помощью которых происходят данные процессы. Марганец участвует в процессах фотосинтеза, дыхания, в углеводном и белковом обмене. Он ускоряет отток углеводов из листьев в корень.

Кроме того, марганец участвует в синтезе витамина С и других витаминов; он увеличивает содержание сахара в корнях сахарной свеклы, белков в зерновых культурах.

Марганцевое голодание чаще всего отмечается на карбонатных, торфяных и сильноизвесткованных почвах.

При недостатке данного элемента замедляется развитие корневой системы и рост растений, снижается урожайность. Животные, поедающие корма с низким содержанием марганца, страдают ослаблением сухожилий, у них слабо развивается костяк. В свою очередь, избыточное количество растворимого марганца, наблюдающееся на сильнокислых почвах, может отрицательно действовать на растения. Токсическое действие избытка марганца устраняют известкованием.

Цинк

Цинк входит в состав ряда ферментов, например, карбоангидразы, катализирующей расщепление угольной кислоты на воду и углекислый газ. Этот элемент принимает участие в происходящих в растении окислительно - восстановительных процессах, в обмене углеводов, липоидов, фосфора и серы, в синтезе аминокислот и хлорофилла. Роль цинка в окислительно - восстановительных реакциях меньше, чем роль железа и марганца, так как он не обладает переменной валентностью. Цинк влияет на процессы оплодотворения растений и развитие зародыша.

Недостаточная обеспеченность растений усвояемым цинком наблюдается на гравийных, песчаных, супесчаных и карбонатных почвах. Особенно страдают от недостатка цинка виноградники, цитрусовые и плодовые деревья в засушливых районах страны на щелочных почвах. При длительном цинковом голодании у плодовых деревьев наблюдается суховершинность - отмирание верхних ветвей. Из полевых культур наиболее острую потребность к данному элементу проявляют кукуруза, хлопчатник, соя и фасоль.

Вызываемое недостатком цинка нарушение процессов синтеза хлорофилла приводит к появлению на листьях хлоротичных пятен светло - зеленого, желтого и даже почти белого цвета.

Кобальт

Кроме всех вышеописанных микроэлементов, в растениях найдены также такие микроэлементы, роль которых в растениях изучена недостаточно (например, кобальт, йод и др.). Вместе с тем установлено, что они имеют большое значение в жизни человека и животных.

Так, кобальт входит в состав витамина В 12 , при недостатке которого нарушаются процессы обмена веществ, в частности, ослабляется синтез белков, гемоглобина и т. д.

Недостаточная обеспеченность кормов кобальтом при содержании его менее 0,07 мг на 1 кг сухой массы приводит к значительному снижению продуктивности животных, а при резком недостатке кобальта скот заболевает сухоткой.

Иод

Иод является составной частью гормона щитовидной железы - тироксина. При недостатке йода резко уменьшается продуктивность скота, нарушаются функции щитовидной железы, происходит ее увеличение (появление зоба). Наименьшее содержание йода наблюдается в подзолистых и серых лесных почвах; более обеспечены йодом черноземы и сероземы. В почвах легкого механического состава, бедных коллоидными частицами, йода меньше, чем в почвах глинистых.

Как показывает химический анализ, в растениях содержатся и такие элементы, как натрий, кремний, хлор, алюминий.

Натрий

Натрий составляет от 0,001 до 4% сухой массы растений. Из полевых культур наибольшее содержание этого элемента наблюдается в сахарной, столовой и кормовой свекле, турнепсе, кормовой моркови, люцерне, капусте, цикорие. С урожаем сахарной свеклы выносится около 170 кг натрия с 1 га, а кормовой - около 300 кг.

Кремний

Кремний содержится во всех растениях. Наибольшее количество кремния отмечено в злаковых культурах. Роль кремния в жизни растений не установлена. Он увеличивает поглощение растениями фосфора благодаря повышению растворимости почвенных фосфатов под действием кремнекислоты. Из всех зольных элементов больше всего в почве содержится кремния, и недостатка в нем растения не испытывают.

Хлор

Хлор в растениях содержится в больших количествах, чем фосфор и сера. Однако необходимость его для нормального роста растений не установлена. Хлор быстро поступает в растения, отрицательно влияя при этом на ряд физиологических процессов. Хлор снижает качество урожая, затрудняет поступление в растение анионов, в частности фосфатного.

Очень чувствительны к высокому содержанию в почве хлора цитрусовые культуры, табак, виноград, картофель, гречиха, люпин, сераделла, лен, смородина. Менее чувствительны к большому количеству хлора в почве злаковые и овощные культуры, свекла, травы.

Алюминий

Алюминий в растениях может содержаться в значительных количествах: на его долю в золе некоторых растений приходится до 70 %. Алюминий нарушает обмен веществ в растениях, затрудняет синтез Сахаров, белков, фосфатидов, нуклеопротеидов и других веществ, что отрицательно сказывается на урожайности растений. Наиболее чувствительными культурами к наличию подвижного алюминия в почве (1 - 2 мг на 100 г почвы) являются сахарная свекла, люцерна, клевер красный, озимая и яровая вики, озимая пшеница, ячмень, горчица, капуста, морковь.

Помимо упомянутых макро - и микроэлементов в растениях содержится ряд элементов в ничтожно малых количествах (от 108 до 10 - 12 %), называемых ультрамикроэлементами. К ним относятся цезий, кадмий, селен, серебро, рубидий и др. Роль этих элементов в растениях не изучена.
читайте так-же

Фосфор (Р)

Для растения – источник энергии.

Исключительно важную роль в процессах обмена энергии фосфор играет и в растительных организмах .

Физиологическое значение фосфора определяется тем, что он входит в состав ряда органических соединений – нуклеиновых кислот (ДНК и РНК), нуклеотидов (АТФ, НАД, НАДФ), нуклеопротеидов, витаминов и многих других, которые играют центральную роль в обмене веществ. Фосфолипиды являются компонентами биологических мембран, причем именно присутствие фосфата в их структуре обеспечивает гидрофильность, остальная часть молекулы липофильная. Многие витамины и их производные, содержащие фосфор, являются коферментами и принимают непосредственное участие в каталитических реакциях, которые ускоряют ход важнейших процессов обмена (фотосинтез, дыхание и т.д.). Фосфор содержится в составе такого органического соединения как фитин (Са–Mg соль инозитфосфорной кислоты), являющийся основной запасной формой фосфора в растении. Особенно много фитина в семенах (до 1–2% сухой массы).
Энергия солнечного света в процессе фотосинтеза и энергия, которая выделяется при окислении ранее синтезированных органических соединений в процессе дыхания, аккумулируется в растениях в виде энергии фосфатных связей в так называемых макроэргических соединениях, важнейшим из которых является аденозинтрифосфорная кислота (АТФ). Накопленная в АТФ при фотосинтетическом и окислительном фосфорилировании энергия используется для всех жизненных процессов роста и развития растения, для поглощения питательных веществ из почвы, для синтеза органических соединений и их транспорта. При недостаточности фосфора нарушается обмен энергии и веществ в растениях.

Фосфор попадает в корневую систему и функционирует в растениях в виде окисленных соединений, главным образом, остатков ортофосфорной кислоты (Н 2 РО 4 – , HPО 4 2– , РО 4 3–). При всех преобразованиях в растительном организме фосфор сохраняет степень окисления, при этом все преобразования сводятся либо к присоединению, либо к переносу остатка фосфорной кислоты (фосфорилирование и трансфосфорилирование).

Фосфорилирование – это присоединение остатка фосфорной кислоты к органическому соединению с образованием эфирной связи, например, взаимодействие фосфорной кислоты с карбонильной, карбоксильной или спиртовой группой. Фосфорилирование белков осуществляется ферментами протеинкиназами и контролирует ход обменных реакций в организме, включая синтез белка и РНК, регуляцию активности ферментов, и лежит в основе работы сигнальных цепей. Фосфорилировать могут и другие соединения. Например, при фосфорилировании сахаров образуются сахарофосфаты – эфиры сахаров и фосфорной кислоты. Эти соединения более лабильны и реакционноспособны, чем свободные сахара, играют существенную роль при дыхании, во взаимных превращениях углеводов, в их синтезе.
Трансфосфорилирование – это процесс, при котором остаток фосфорной кислоты, включенный в состав одного органического вещества, переносится на другое органическое вещество. Ряд важнейших в биологическом отношении фосфорных соединений содержит несколько остатков фосфорной кислоты. Для фосфора характерна способность к образованию связей с высоким энергетическим потенциалом (макроэргические связи). Такие связи нестабильны, это облегчает их обмен и позволяет использовать энергию на сами биохимические и физиологические процессы. Важным соединением, содержащем макроэргические фосфорные связи, является АТФ. Фосфорная кислота, попадая в живые клетки корня растения, быстро включается в состав нуклеотидов, образуя АМФ и АДФ. Далее в процессе субстратного и окислительного фосфорилирования (анаэробная и аэробная фазы дыхания) образуется АТФ.

Особенно резко у всех растений дефицит фосфора сказывается на образовании репродуктивных органов. Его недостаточность тормозит развитие и задерживает созревание семян, вызывает снижение урожая и ухудшение его качества. Растения при недостаточности фосфора резко замедляют рост, листья их приобретают (сначала по краям, а затем по всей поверхности) серо–зеленый, пурпурный или красно–фиолетовый цвет. У зерновых злаков дефицит фосфора снижает кущение и образование плодоносящих стеблей. Признаки фосфорного голодания обычно проявляются уже на начальных стадиях развития растений, когда они имеют слаборазвитую корневую систему и не способны усваивать сложнорастворимые фосфаты почвы.

Усиленное обеспечение растений фосфором ускоряет их развитие и позволяет получать более ранний урожай, одновременно улучшается и его качество.

Лекарственные растения, содержащие фосфор :
виды полыни Artemisia L., Asteraceae (трава, содержание – 1,2–1,3%);
копеечник Гмелина Hedysarum gmelinii Ledeb., Fabaceae (трава, содержание – 1,03%);
ковыль перистый Stipa pennata L., Poaceae (трава, содержание – 0,88%);
зопник клубненосный Phlomis tuberosa L., Lamiaceae (клубни, трава, содержание – 0,85%);
тимьян ползучий Thymus serpyllum L., Lamiaceae (трава, содержание – 0,67%);
костер безостый Bromopsis inermis (Leys). Holub, Poaceae (трава, содержание – 0,65%);
лапчатка кустарниковая Pentaphylloides fruticosa (L.) O. Schwarz., Rosaceae (трава, содержание – 0,13–0,5%);
клевер луговой Trifolium pratense L., Fabaceae (листья, соцветия);
рябина обыкновенная Sorbus aucuparia L., Rosaceae (плоды – 1% *);
виды боярышника Crataegus L., Rosaceae (плоды – 1% *).

_____________________

* Особенно много фосфора содержится в семенах.


Страница 5 из 13

Роль фосфора в питании растений

Фосфор является необходимым элементом питания растений. Он входит в состав нуклеиновых кислот, мембран, фосфолипидов. Фосфор является элементом энергосистемы, входит в состав макроэргических соединений. Как запасающее вещество откладывается в семенах растений. Если в минеральном питании недостает фосфора, то падает активность фотосинтеза, дыхания, так как нарушается синтез хлорофилла.

Давно замечено, что в первые периоды роста сельскохозяйственные культуры поглощают фосфаты интенсивнее, чем в последующие. Фосфорное голодание растений в ранний период роста накладывает настолько длительный угнетающий эффект, что его невозможно полностью преодолеть даже нормальным последующим питанием. Мало того, такие голодавшие в начале развития культуры реагируют отрицательно на обильное фосфатное питание в дальнейшем.

Проблема фосфора встает одной из самых острых в земледелии. Объясняется это двумя основными причинами – дефицитом геологических запасов этого элемента и быстрым и прочным связыванием его в почве при внесении с удобрениями. Именно по этому, усвояемость сельскохозяйственными растениями фосфора удобрений не превышает 25% и подавляющее его количество фиксируется почвой, превращаясь в труднодоступные для растений фосфаты.

Фосфору принадлежит особая роль среди элементов питания растений. Он выполняет энергетическую и конституционную функции в растениях и других организмах. Фосфор входит в состав многих жизненно важных фосфорорганических соединений, среди которых наибольшее значение имеют АТФ и нуклеиновые кислоты, участвующие практически во всех биохимических процессах энергетического обмена в клетке, передаче наследственной информации, синтезе ферментов, белков, углеводов и других веществ. Макроэргические связи АТФ являются главным акцептором энергии, образующейся при фотосинтезе и в процессе дыхания клетки, а также основным поставщиком энергии, необходимой для осуществления синтеза белков, жиров, углеводов и активного поступления элементов питания в растения. Важная роль фосфора в составе фосфатидов - образование липидных цитоплазматических мембран, контролирующих поступление питательных веществ в растения.

Поскольку фосфор «контролирует» практически все биохимические процессы жизнедеятельности растений, своевременное обеспечение их питания фосфором имеет первостепенное значение для формирования высоких урожаев сельскохозяйственных культур.

Установлено, что недостаточная обеспеченность растений фосфором в первые 12-15 дней после появления всходов негативно сказывается на росте и развитии растений в течение всего периода вегетации, а следовательно, и на урожайности, даже если в дальнейшем растения были хорошо обеспечены фосфором. Первые две недели после всходов являются критическим периодом растений в отношении фосфорного питания. Фосфорное голодание в этот период приводит к нарушению обмена веществ в растениях и снижению их продуктивности.

Результаты длительных опытов показывают, что на дерново-подзолистых почвах с низким содержанием подвижных фосфатов (40- 70 мг Р 2 0 5 на 1 кг почв) продуктивность севооборотов составляет менее 2,0 т з.е./га. При содержании Р 2 0 5 120-140 мг/кг она увеличивается до 3,5-4,0 т з.е./га, а при высоком содержании Р 2 0 5 (250- 300 мг/кг) продуктивность возрастает до 5-6 т з.е./га и выше. По мере увеличения содержания подвижных фосфатов в почве значительно уменьшается зависимость урожайности сельскохозяйственных культур от неблагоприятных погодных условий.

Фосфор (от греч. phosphoros - светоносный) имеет один устойчивый нуклид 31 Р (атомная масса 30,974). В агрохимических исследованиях также нашли широкое применение искусственные радиоактивные изотопы 32 Р и 33 Р, обладающие соответственно высокой и мягкой энергией (3-излучения с периодом полураспада 14,3 и 25,3 суток. Фосфор открыл Н. Брандт в 1669 г. Первоначально его получали из мочи животных. В 1771 г. К. Шееле предложил способ получения фосфора из костяной золы.

Среди химических элементов земной коры (литосферы) фосфор занимает 13-е место. Среднее содержание фосфора в земной коре - 0,12%. Благодаря высокой реакционной способности фосфор в свободном состоянии в природе не встречается. Все фосфорсодержащие минералы являются солями ортофосфорной кислоты. Они распространены среди магматических и осадочных пород. В метеоритах фосфор найден также в виде фосфидов железа, никеля и кобальта; поэтому можно полагать, что до появления кислорода на Земле фосфор входил в состав фосфидов металлов.

В соответствии с электронной структурой атома фосфора lS 2 2s 2 2p 6 3s 2 3p 3 степень его окисления может меняться от 3 _ до 5 + , однако в наиболее устойчивых его соединениях он проявляет валентность 5 + , 3 + и 3".

Известно большое количество минералов, имеющих в своем составе фосфор. Среди них наиболее распространены апатиты. В торфяниках и болотистых местах довольно часто локально встречается вивианит Fe 3 (P0 4) 2 - 8Н 2 0. Значительно реже почвообразующие породы содержат фосфорсодержащие минералы - торбернит Cu(U0 2) 2 (P0 4) 2 12Н 2 0, трифилит Li(Fe,Mn)P0 4 , амблигонит LaAl(P0 4)F.

«Фосфор - “элемент жизни и мысли” - будет нужен человечеству всегда, и это необходимо иметь в виду как сегодня, так и в будущем» (Ферсман, 1983).

Стремление сторонников биологического земледелия обеспечить растения фосфором без применения фосфорных удобрений не имеет реальной основы. Фосфор не случайно назвали «ключом жизни», так как в природе нет таких жизненно важных биохимических процессов, в которых бы он не принимал непосредственного участия. По своей значимости в питании растений, повышении урожайности сельскохозяйственных культур и качества продукции растениеводства фосфор идет следом за азотом, а на торфянистых почвах и черноземах фосфору принадлежит ведущее место.

Важным показателем возрастающей значимости фосфора для человечества может служить его промышленное потребление.

С 1985 по 2005 г. было добыто и использовано 29 млрд т фосфатов, тогда как за предшествующие им 80 лет -около 24 млрд т.

Следует отметить, что в отличие от азота, содержание которого в почве в естественных условиях постоянно пополняется за счет атмосферных осадков и азотфиксирующих микроорганизмов, единственным источником фосфора в почвах являются почвообразующие горные породы. Ведущим фактором, определяющим запасы фосфора в почве, является его содержание в материнской породе.

Фосфор входит в состав минеральных, органических и органоминеральных соединений почвы. Условно почвенный фосфор можно разделить на четыре группы: 1) фосфор, содержащийся в почвенном растворе, - фосфат-ионы и растворимые органические фосфорсодержащие соединения; 2) фосфаты, адсорбированные на поверхности почвенных коллоидов; 3) фосфорсодержащие аморфные и кристаллические минералы; 4) фосфор, входящий в состав органического вещества почвы.

С поливалентными металлами фосфат-ионы образуют широкий спектр слаборастворимых и нерастворимых фосфатов, которые прочно удерживаются в почве на месте их образования и становятся слабо доступными растениям. Формами этих соединений могут быть обменно поглощенные фосфат-ионы, фосфаты, химически прочно связанные на поверхности минеральных и органических коллоидов, аморфные и кристаллические фосфаты (минералы) Са, Al, Fe, Mg, Ti, Pb и др. Непосредственным резервом для растений являются фосфаты, находящиеся в адсорбированном состоянии.

Обменная адсорбция фосфат-ионов происходит на поверхности вторичных глинистых минералов, оксидов железа и алюминия:

Восполнение равновесной концентрации фосфора в почвенном растворе (фосфатная буферность почвы) происходит постоянно за счет как минерализации органического вещества, так и перехода в раствор обменно адсорбированных фосфат-ионов и фосфорных соединений аморфных и кристаллических минералов.

Известно, что ионы Н 2 РО“ и Н РО^ - перемещаются к корням растений в основном в результате диффузии с массовым потоком воды, расходуемой на транспирацию. При низкой влажности почвы передвижение фосфора к корням протекает особенно медленно и может лимитировать потребление его растениями. Поэтому слаборастворимые фосфорные удобрения для повышения их доступности растениям должны быть равномерно распределены во влажном слое почве.

Фосфор, содержащийся в органическом веществе почвы, может быть доступен растениям только после ферментативного гидролиза его микроорганизмами, а так как значительная часть фосфора входит в органические соединения, для его минерализации необходимо полное разложение фосфорсодержащего органического вещества. Процесс этот не специфичен и может осуществляться многими видами микроорганизмов.

Органическое вещество почвы оказывает также большое косвенное влияние на доступность фосфора растениям благодаря способности гуминовых и фульвокислот образовывать недиссоциируемые комплексы (хелаты) с катионами двух- и трехвалентных металлов: Al 3+ , Fe 2>3+ , Са 2+ , Mg 2+ , Mn 2+ , Ti 23+ , РЬ 2+ и др. В результате хелатирования катионов поливалентных металлов их концентрация в почвенном растворе снижается и параллельно уменьшается образование нерастворимых соединений фосфора с металлами. Кроме того, кислоты, высвобождающиеся при разложении органического вещества почвы и растительных остатков, заметно повышают растворимость фосфатов кальция. Во всех почвах без исключения с увеличением содержания органического вещества существенно возрастает доступность фосфора растениям. Поэтому, чтобы фосфор нерастворимых удобрений сделать более доступным, их вносят в почву вместе с органическими удобрениями.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: