Необходимые растению элементы минерального питания. Питательные вещества для растений


1. Изучение влияния на интенсивность физиологических процессов при их исключении из питательной среды.

2. Изучение специфической роли отдельных микроэлементов, главным образом участия их в определенных ферментных реакциях.

Второй биохимический подход оказался более результативным.

Железо было первым микроэлементом, необходимость которого была открыта Грисом в 1843 - 1844гг.

Необходимость других микроэлементов - бора, марганца, меди, цинка и молибдена, для высших растений была установлена только в 20-ых и 30-ых годах 20 столетия. Установлению их необходимости способствовало вскрытие причин многих заболеваний растений, не вызываемых грибной и бактериальной инфекцией - гниль сердечка сахарной свеклы, серая пятнистость листьев, бронзовая болезнь и др. Все эти болезни оказались результатом физиологического расстройства, вызванного недостатком того или иного микроэлемента, и болезнь ликвидировалась, как только удовлетворялась потребность растения в отсутствовавшем элементе.

Этим элементам принадлежит исключительная роль в обмене веществ. Они, соединяясь с органическими веществами, особенно белками, во много раз повышают свою каталитическую активность. Так, например, железо в составе сложного геминового комплекса в сочетании со специфическим белком повышает каталитическую активность против активности иона железа в 1010 раз.

Бор, алюминий, кобальт, марганец, цинк и медь повышают засухоустойчивость растений. И в данном случае действие микроэлементов обусловлено влиянием на коллоидно-биохимические свойства протоплазмы (повышение гидрофильности и водоудерживающей способности коллоидов). Микроэлементы усиливают также передвижение пластических веществ из листьев в генеративные органы.

Существенные сдвиги вызывают некоторые микроэлементы в скорости прохождения стадий развития. Установлено, что намачивание семян пшеницы в растворах солей Cu, Zn, Mo, B значительно ускоряет прохождение растениями стадии яровизации, тогда как растворы Fe и Mn не оказывали положительного действия или задерживали развитие.

Влияние каждого из элементов зависит от концентрации: оно сказывается на последующем росте надземных органов и корней неодинаково. Так, Cu и Mo стимулируют рост стебля и корней, тогда как Mn и Ni - только стебля, а B и Sr - только корневой.

Сильное положительное влияние оказывала обработка семян Сu на засухоустойчивость растений хлопчатника. Этот эффект обусловлен повышением водоудерживающей способности и сосущей силы клеток листовой паренхимы, изменением анатомического строения листьев в сторону ксерофитности и т.д. Аналогичный эффект наблюдали на озимой пшенице при обработке семян солями B,Cu, Mo, Co, P и К. прохождение световой стадии ускорялось под влиянием B, Co, Mo, Mn, Zn, Cu и Al. Интересно, что это наблюдалось только на длиннодневных растениях (озимая пшеница, овес) и не проявлялось на короткодневных (перилла).

В решение вопросов, связанных с питанием растений микроэлементами большой вклад внесли Я. В. Пейве, М. Я. Школьник, М. В. Каталымов, Б. А. Ягодин и др.

Бор

Бор - один из наиболее важных для растений микроэлементов. Его среднее содержание составляет 0,0001%, или 0,1 мг на 1 кг сухой массы. В боре наиболее нуждаются двудольные растения. Обнаружено значительное содержание бора в цветках, особенно в рыльце и столбиках. В клетке большая часть этого микроэлемента сконцентрирована в клеточных стенках. Бор усиливает рост пыльцевых трубок, прорастание пыльцы, увеличивает количество цветков и плодов. Без него нарушается созревание семян. Бор снижает активность некоторых дыхательных ферментов, оказывает влияние на углеводный, белковый и нуклеиновый обмен.

Поглощение бора сильно зависит от pH, а его распределение по растению происходит преимущественно с транспирационным током. Необходимость бора для растений установлена очень давно, но до сих пор неясно, каким образом реализуются его функции: в какие конкретно реакции он включен и каков механизм его участия в отдельных процессах.

Роль бора выяснена далеко не достаточно. Это связано с тем, что бор, в отличие от большинства других микроэлементов, не входит в состав ни одного фермента и не является активатором ферментов. Большое значение для осуществления функции бора имеет его способность давать комплексные соединения. Комплексы с борной кислотой образуют простые сахара, полисахариды, спирты, фенольные соединения и др. В этой связи можно предположить, что бор влияет на скорость ферментативных реакций через субстраты, на которые действуют ферменты.

Недостаток бора вызывает ряд заболеваний: гниль сердечка сахарной свеклы, внутренняя черная пятнистость столовой свеклы и брюквы, болезнь побурения головок цветной капусты, отмирание колосков у пшеницы и даже всего зачаточного колоса у ячменя, пожелтение люцерны и др. Установлено, что под влиянием бора изменяется ряд физиологических процессов: увеличивается оводненность плазмы, усиливается поглощение катионов и особенно кальция и ослабляется поглощение анионов.

Также при недостатке бора нарушаются синтез, превращения и транспорт углеводов, формирование репродуктивных органов, оплодотворение и плодоношение. Бор необходим растениям в течение всего периода их развития. Он не может реутилизироваться и поэтому при борном голодании прежде всего

отмирают конусы нарастания - наиболее типичный симптом борной недостаточности. Анатомические исследования указывают на прекращение деления клеток в меристеме. Одновременно обнаруживаются значительные нарушения нормального расположения элементов флоэмы и ксилемы, вплоть до полной потери этими тканями проводимости. В этом состоят причины обнаруживаемых при борном голодании нарушений передвижения пластических веществ и, прежде всего, сахаров из листьев в осевые и запасные органы растений.

Культуры, наиболее чувствительные к недостаче бора: сахарная и кормовая свекла, рапс, бобовые, люцерна, овощные, яблоня, виноград.

Магний

У высших растений среднее содержание магния составляет 0,02 %. Особенно много магния в растениях короткого дня - кукурузе, просе, сорго, конопле, а также в картофеле, свекле, табаке и бобовых. Много его накапливается в молодых клетках и растущих тканях, а также в генеративных органах и запасающих тканях. В зерновках магний накапливается в зародыше, где его уровень в несколько раз превышает содержание в эндосперме и кожуре. Накоплению магния в молодых тканях способствует его сравнительно высокая подвижность в растениях, что обусловливает его вторичное использование (реутилизацию) из стареющих тканей. Перемещение магния осуществляется как по ксилеме, так и по флоэме.

В хлоропласте сосредоточено 15% Mg 2+ листа, до 6% его может находиться в составе хлорофилла. При дефиците магния (голодании) доля Mg 2+ в пигменте может достигать даже 50% от общего содержания в листе. Эта функция магния уникальна: ни один другой элемент не может заменить его в хлорофилле. Магний необходим для синтеза протопорфирина 9 - непосредственного предшественника хлорофилла.

Магний поддерживает структуру рибосом, связывая РНК и белок. Большая и малая субъединицы рибосом ассоциируют вместе лишь в присутствии магния. Отсюда синтез белка не идет при недостатке магния, а тем более в его отсутствии. Магний является активатором многих ферментов. Важной особенностью магния является то, что он связывает фермент с субстратом по типу хелатной связи.

Магний входит в состав фитина (органофосфата), запасного органического вещества. Отвечает за транспорт энергии, активирует фермент, который является катализатором участия СО 2 в процессе фотосинтеза.

Магний необходим для многих ферментов цикла Кребса и гликолиза. Он требуется и для работы ферментов молочнокислого и спиртового брожения.

Магний усиливает синтез эфирных масел, каучука, витаминов А и С.

При повышении степени обеспеченности магнием в растениях возрастает содержание органических и неорганических форм фосфорных соединений. Этот эффект, вероятно, связан с ролью магния в активации ферментов, участвующих в метаболизме фосфора.

Процесс поступления магния в растения может зависеть от степени обеспеченности растений другими катионами. Так, при высоком содержании калия или аммония в почве или питательном растворе уровень магния, особенно в вегетативных частях растений, снижается. В плодах же количество магния при этом не меняется или может даже возрастать. Наоборот, при низком уровне калия или аммония в питательной среде содержание магния в растении повышается. Кальций и марганец также действуют как конкуренты в процессе поглощения магния растениями.

Недостаток в магнии растения испытывают в основном не песчаных почвах. Бедны магнием и кальцием, богаты - сероземы; черноземы занимают промежуточное положение. При снижении pH почвенного раствора магний поступает в растения в меньших количествах.

Недостаток магния приводит к уменьшению содержания фосфора в растениях, даже если фосфаты в достаточных количествах имеются в питательном субстрате, тем более, что транспортируется фосфор по растению в основном в органической форме. Поэтому дефицит магния будет тормозить образование фосфорорганических соединений и соответственно распределение фосфора в растительном организме.

При недостатке магния нарушается формирование пластид: матрикс хлоропластов просветляется, граны слипаются. Между зелеными жилками появляются пятна и полосы светло-зеленого, а затем желтого цвета. Края листовых пластинок приобретают желтый, оранжевый, красный или темно-красный цвет, и такая "мраморная" окраска листьев наряду с хлорозом служит характерным признаком нехватки магния. На более поздних стадиях магниевого голодания светло-желтые и беловатые полоски отмечаются и на молодых листьях, свидетельствуя о разрушении в них хлоропластов, а затем и каротиноидов, причем зоны листа, прилежащие к сосудам, дольше остаются зелеными. Впоследствии развиваются хлороз и некроз, затрагивая в первую очередь верхушки листьев.

Признаки магниевой недостаточности вначале проявляются на старых листьях, а затем распространяются на молодые листья и органы растения. Высокая и продолжительная освещенность усиливает признаки нехватки магния.

Культуры, чувствительные к недостатку магния: сахарная свекла, картофель, хмель, виноград, орехи, парниковые культуры.

Железо

В составе соединений, содержащих гем (все цитохромы, каталаза, пероксидаза), и в негемовой форме (железосерные центры) железо принимает участие в функционировании основных редокс-систем фотосинтеза и дыхания. Вместе с молибденом железо участвует в восстановлении нитратов и в фиксации молекулярного азота клубеньковыми бактериями, входя в состав нитратредуктазы и нитрогеназы. Железо катализирует также начальные этапы синтеза хлорофилла. Поэтому недостаточное поступление железа в растения в условиях переувлажнения и на карбонатных почвах приводит к снижению интенсивности дыхания и фотосинтеза и выражается в пожелтении листьев (хлороз) и быстром их опадении. Если для вегетирующих растений железо становится недоступным, то хлороз проявляется только на вновь развивающихся органах. Следовательно, железо прочно связывается в клетках и не способно передвигаться из старых тканей к молодым. Железо необходимо также и для бесцветных растений - грибов и бактерий, поэтому его роль не ограничивается только участием в образовании хлорофилла.

В злаковых культурах хлороз проявляется в виде чередования желтых и зеленых полос вдоль листа. В отдельных случаях дефицит железа может вызвать отмирание молодых побегов.

Дефицит железа вызывает также изменения морфологии корней, индуцируя рост корневых волосков, которые обильно покрывают поверхность корня. Это способствует лучшему контакту с почвой и почвенным раствором, увеличивая поглощение железа.

Наряду с железом каталитически активных соединений ткани растений могут включать этот элемент в вещества запасного характера. Одно из них - белок ферритин, который содержит железо в негемовой форме. На долю железа может приходиться около 23% сухой массы ферритина. В больших количествах ферритин присутствует в пластидах.

Культуры, чувствительные к недостатку железа: кукуруза, бобовые, картофель, капуста, томаты, виноград, плодовые и цитрусовые, декоративные культуры.

Марганец

Впервые на необходимость для растений марганца обратил внимание Бертран (1897). Среднее его содержание составляет 0,001% или 1 мг на 1 кг сухой массы тканей. В клетки он поступает в форме ионов Mn 2+ . Марганец накапливается в листьях. Установлено участие ионов этого металла в выделении кислорода (фоторазложение воды) и восстановлении CO 2 при фотосинтезе. Марганец способствует увеличению содержания сахаров и их оттоку из листьев. Ионы марганца активируют ферменты, катализирующие реакции цикла Кребса (дегидрогеназы яблочной кислоты, лимонной кислоты, декарбоксилазу щавелевоуксусной кислоты и др.). в связи с этим понятно большое значение марганца для процесса дыхания, особенно его аэробной фазы.

Велико значение марганца для нормального протекания обмена азотистых соединений. Марганец принимает участие в процессе восстановления нитратов до аммиака. Этот процесс проходит через этапы, катализируемые рядом ферментов, из которых два (гидроксиламинредуктаза и нитритредуктаза) зависимы от марганца, в связи с чем растения, испытывающие недостаток марганца, не могут использовать нитраты в качестве источника азотного питания.

Марганец активирует ферменты, участвующие в окислении важнейшего фитогормона - ауксина.

Этот элемент играет специфическую роль в поддержании структуры хлоропластов. В отсутствии марганца хлорофилл быстро разрушается на свету.

Несмотря на значительное содержание марганца в почве, большая его часть труднодоступна для растений, особенно на почвах, имеющих нейтральное значение pH.

Марганец отвечает за окисление железа в организме растений к нетоксичным соединениям. Является необходимым компонентом синтеза витамина С. Интенсифицирует накопление сахара в корнеплодах сахарной свеклы и белка у зерновых культур. Отвечает за процесс усвоения азота. Является активатором фотосинтеза после подмерзания растений.

Симптом заболевания, вызванного недостатком марганца, служит прежде всего появление хлоротичных пятен между жилками листа. У злаков появляются удлиненные полоски хлоротичной ткани серого цвета, затем появляется узкая зона ослабленного тургора, в результате чего пластинка листа свешивается вниз. При резкой недостаточности марганца эти симптомы распространяются и на стебель. Заболевшие листья при развитии заболевания буреют и отмирают.

Болезнь серая пятнистость широко распространена на богатых гумусом почвах, имеющих щелочную реакцию. Этому заболеванию подвержены злаки, особенно овес, пшеница, рожь, кукуруза.

У растений с сетчатым жилкованием листьев при недостатке марганца появляются разбросанные по листу хлоротичные пятна, в большей степени на нижних листьях, чем на верхних.

У свеклы недостаточность марганца вызывает заболевание, известное под названием пятнистой желтухи. На листьях появляются желтые хлоротичные участки, затем края листьев закручиваются вверх.

У гороха при недостатке марганца развивается пятнистость семян. Это заболевание выражается в появлении на семенах гороха коричневых и черных пятен или даже полостей на внутренних поверхностях семядолей.

Хлороз развивается и при очень высоком содержании марганца, в этом случае марганец окисляет железо в нерастворимую окисную форму и хлороз развивается уже от недостатка железа. Избыток же железа вызывает симптомы недостаточности марганца. Наиболее благоприятные соотношения железа и марганца для лучшего роста растений и общего здорового состояния 2:1.

Культуры, чувствительные к недостатку марганца: зерновые колосовые (пшеница, ячмень, овес), кукуруза, горох, соя, картофель, сахарная свекла, вишня, цитрусовые.

Цинк

Содержание цинка в надземных частях бобовых и злаковых растений составляет 15 - 60 мг на 1 кг сухой массы. Повышенная концентрация отмечается в листьях, репродуктивных органах и конусах нарастания, наибольшая - в семенах. Цинк поступает в растение в форме катиона Zn 2+ , оказывая многостороннее действие на обмен веществ. Он необходим для функционирования ряда ферментов гликолиза. Роль цинка важна также в образовании аминокислоты триптофана. Именно с этим связано влияние цинка на синтез белков, а также фитогормона индолилуксусной кислоты (ауксина), предшественником которой является триптофан. Подкормка цинком способствует увеличению содержания ауксинов в тканях и активирует их рост. Цинк играет важную роль в метаболизме ДНК и РНК, в синтезе белка и клеточном делении. Является активатором ферментов, предотвращает преждевременное старение клеток. Способствует повышению жаро-, засухо - и морозостойкости растений. Цинк долгое время рассматривался как стимулятор и только к 30 гг. прошлого столетия была установлена безусловная необходимость этого элемента для всех высших растений. Болезнь недостаточности цинка широко распространена среди плодовых деревьев. При недостаточности цинка вместо нормально удлиненных побегов с хорошо развитыми листьями больные растения образуют весной розетку мелких скученных жестких листочков. У разных плодовых болезнь обозначается по-разному: мелколистность, розеточная болезнь, пятнистый хлороз, желтуха. Цинк участвует в окислительно-восстановительных процессах, он связан с превращением соединений, содержащих сульфгидрильную группу. Недостаток цинка вызывает подавление процессов углеводного обмена, так как недостаток цинка сильнее всего сказывается на растениях, богатых углеводами. Также при дефиците цинка у растений нарушается фосфорный обмен: фосфор накапливается в корневой системе, задерживается его транспорт в надземные органы, замедляется превращение фосфора в органические формы - в несколько раз возрастает содержание неорганических фосфатов, снижается содержание фосфора в составе нуклеотидов, липидов и нуклеиновых кислот. Кроме того, в 2-3 раза подавляется скорость деления клеток, что приводит к морфологическим изменениям листьев, нарушению растяжения клеток и дифференциации тканей.

Культуры, особенно чувствительные к недостатку цинка: кукуруза, соя, фасоль, хмель, картофель, лен, овощи зеленые, виноград, яблоня и груша, цитрусовые.

Молибден

Наибольшее содержание молибдена характерно для бобовых (0,5 - 20 мг на 1 кг сухой массы), злаки содержат от 0,2 до 2,0 мг молибдена на 1 кг сухой массы. Он поступает в растения как анион MoO 4 2- , концентрируется в молодых, растущих органах. Его больше в листьях, чем в корнях и стеблях, а в листе сосредоточен в основном в хлоропластах.

Молибден принимает участие в восстановлении нитратов, входя в состав нитратредуктазы, а также является компонентом активного центра нитрогеназы бактероидов, фиксирующих атмосферный азот в клубеньках бобовых.

Способствует увеличению содержания хлорофилла, углеводов, каротина, аскорбиновой кислоты и белковых веществ.

Молибден входит в состав более 20 ферментов, выполняя при этом не только каталитическую, но и структурную функцию.

При недостатке Mo в тканях накапливается большое количество нитратов, не развиваются клубеньки на корнях бобовых, тормозится рост растений, наблюдается деформация листовых пластинок. Молибден, как и железо, необходим для биосинтеза легоглобина (леггемоглобина) - белка-переносчика кислорода в клубеньках бобовых. При дефиците клубеньки приобретают желтый или серый цвет, нормальная же их окраска - красная.

При недостатке молибдена резко падает содержание аскорбиновой кислоты, наблюдаются нарушения в фосфорном обмене растений.

У растений, испытывающих дефицит молибдена, на листьях появляются светлые пятна, возможно отмирание почек, плоды и клубни растрескиваются.

Тормозится рост растений и из-за нарушения синтеза хлорофилла растения выглядят бледно-зелеными. Эти признаки похожи на признаки недостатка азота.

Культуры, чувствительные к недостатку молибдена: зерновые колосовые, бобовые, сахарная свекла, томаты, капуста, люцерна.

Другие микроэлементы

В составе разных видов растений найдено более 60 элементов, из них, кроме отмеченных выше, натрий, силиций, хлор, кобальт, медь, и алюминий рассматриваются некоторыми авторами также как необходимые.

Находящийся в растении кремний пропитывает клеточные стенки и делает их твердыми и устойчивыми против повреждения насекомыми и предохраняет клетки против проникновения грибной инфекции. Также кремний необходим для роста диатомовых водорослей.

Хлор считается стимулятором активности ферментов. Важное значение хлор имеет для зеленых фотосинтезирующих растений. Имеются сведения о влиянии хлора на азотный обмен. Концентрируясь в растении в вакуолях, хлориды могут выполнять осморегулирующую функцию. Недостаток хлора проявляется редко и наблюдается только на очень щелочных почвах.

Действие алюминия рассматривается как катализатора. Кроме того, при некотором избыточном накоплении в растении алюминия меняется окраска цветов. Так, например, под влиянием накопления алюминия в растении Hydrangea нормально красные или белые цветы изменяются в синие или фиолетовые.

Натрий накапливается в растениях в значительных количествах, но в жизни их существенной роли не играет, так как может быть полностью исключен из питательного раствора. Однако для галофитов, растений засоленных мест, присутствие натрия благоприятствует росту.

Содержание кобальта в среднем составляет 0,00002%. Особенно кобальт необходим бобовым растениям, поскольку участвует в фиксации атмосферного азота. Кобальт входит в состав кобаламина (витамин В12 и его производные), который синтезируется бактериями в клубеньках бобовых растений, а также в состав ферментов у азотфиксирующих организмов, участвующих в синтезе метионина, ДНК и делении клеток бактерий. При дефиците кобальта подавляется синтез леггемоглобина, снижается синтез белка, и уменьшаются размеры бактероидов. Это говорит в пользу необходимости кобальта. Установлена потребность в кобальте для высших растений, не способных к азотфиксации. Показано влияние кобальта на функционирование фотосинтетического аппарата, синтез белка, его связь с ауксиновым обменом. Трудность решения вопроса о необходимости кобальта для всех растений заключается в том, что потребность в нем чрезвычайно мала.

Медь активизирует образование белков и витаминов группы В. Как и цинк, активирует фермент, предотвращает преждевременное старение клеток растения. Принимает участие в метаболизме белков и углеводов в растении. Существенно повышает иммунитет растения грибковым и бактериальным заболеваниям. Этого элемента очень мало в песчаных и торфянистых почвах. Недостаток меди проявляется в устойчивом увядании верхних листьев, даже при хорошем обеспечении влагой, вплоть до их опадания. Наблюдается отмирание краев молодых листьев с последующим их хлорозом и скручиванием; замедляется высвобождение пыльцовых зерен, вследствие чего снижается опыление растений. Наблюдается существенное снижение урожайности культуры (если отсутствуют визуальные признаки дефицита микроэлемента); у злаковых культур может наблюдаться полегание; у плодовых культур может наблюдаться поникание ветвей и кроны.



Татьяна Рудакова

Основными веществами, из которых состоит протоплазма клеток (как раз в них происходят важнейшие для жизни растений биохимические и физиологические процессы), являются белки. Белки состоят из углерода, кислорода, водорода, азота, фосфора, серы, железа и других элементов. В крайне небольших количествах в растениях присутствуют микроэлементы: марганец, медь, цинк, молибден, бор и др.

Углерод растения получают из двух источников: углекислого газа воздуха в процессе фотосинтеза и из органических веществ почвы.

Кислород поступает в растения из воздуха при их дыхании и, частично, с водой из почвы.

Азот, калий, фосфор, железо, серу и другие элементы растения получают из почвы, где они находятся в виде минеральных солей и входят в состав органических веществ (аминокислот, нуклеиновых кислот и витаминов). Через кореньрастения поглощают из почвы главным образом ионы минеральных солей, а также некоторые продукты жизнедеятельности почвенных микроорганизмов и корневые выделения других растений. Поглощённые соединения азота, фосфора и серы взаимодействуют с притекающими из листьев продуктами фотосинтеза с образованием аминокислот, нуклеотидов и других органических соединений. По сосудам растения элементы в форме ионов (калий, кальций, магний, фосфор) или органических молекул (азот, сера) в результате действия корневого давления и транспирации передвигаются в листья и стебли. В корне синтезируются также алкалоиды (например, никотин), гормоны роста (кинины, гиббереллины) и другие физиологически активные вещества. Корни выделяют также ауксины и другие вещества, стимулирующие рост растений.

Основная масса химических элементов, необходимых растениям для питания, находится в почве в нерастворимых соединениях, потому недоступна растениям для усвоения. Лишь небольшая часть веществ, содержащих питательные элементы, может растворяться в воде или слабых кислотах и усваиваться растениями. Нерастворимые питательные вещества принимают доступную для усвоения форму под воздействием почвенных микроорганизмов. Микроорганизмы также выделяют антибиотики, витамины и другие полезные растениям вещества.

Макроэлементы - это элементы, которые нужны растениям в значительных количествах, их содержание в растении достигает 0,1 - 5 %. К макроэлементам относятся азот, калий, фосфор, сера, кальций, магний.

Азот (N) входит в состав аминокислот, из которых состоят молекулы белка. Также он входит в состав хлорофилла, участвующего в фотосинтезе растений, и ферментов. Азотное питание сказывается на росте и развитии растений, при его недостатке растения слабо развивают зеленую массу, плохо ветвятся, их листья мельчают и быстро желтеют, цветки не раскрываются, засыхают и опадают.

Источником азота для питания растений могут служить соли азотной и азотистой кислоты, аммоний, карбамид (мочевина).

Калий (K) в растениях находится в ионной форме и не входит в состав органических соединений клетки. Калий помогает растениям усваивать углекислый газ из воздуха, способствует передвижению в растении углеводов; легче переносить засуху, поскольку удерживает в растении воду. При недостаточном калийном питании растение быстрее поражается различными заболеваниями. Дефицит калия вызывает ослабление деятельности некоторых ферментов, что приводит к нарушениям в белковом и водном обмене растения. Внешне признаки калийного голодания проявляются в том, что старые листья преждевременно желтеют, начиная с краев, затем края листьев буреют и отмирают. Поглощение калия растением впрямую зависит от прироста корневой массы: чем она выше, тем растение больше поглощает калия.

К калийным минеральным удобрениям относится хлористый калий и сернокислый калий.

Фосфор (P) входит в состав нуклеопротеидов, главной составной части клеточного ядра. Фосфор ускоряет развитие культур, повышает выход цветочной продукции, позволяет растениям быстро адаптироваться к низким температурам.

К фосфорным минеральным удобрениям относятся суперфосфат, фосфоритная мука, соли ортофосфорной кислоты. Необходимо учитывать только, что в нейтральной и щелочной среде образуются малорастворимые соли, фосфор которых недоступен растениям.

Сера (S) входит в состав белков, ферментов, других органических соединений клетки растений. При недостатке серы молодые листья равномерно желтеют, жилки становятся пурпурными. Постепенно теряют зеленую окраску и более старые листья.

Специальных серных удобрений обычно не вносят, т. к. она содержится в суперфосфате, сернокислом калии, навозе.

Кальций (Ca) необходим как надземным органам, так и корням растения. Его роль связана с фотосинтезом растения и развитием корневой системы (при недостатке кальция корни утолщаются, не образуется боковых корешков и корневых волосков). Недостаток кальция проявляется на концах побегов. Молодые листья светлеют, на них появляются светло-желтые пятна. Края листьев загибаются вниз, приобретая вид зонтика. При сильном дефиците кальция погибает верхушка побега.

Магний (Mg) входит в состав хлорофилла, активирует фермент, преобразующий углекислый газ при фотосинтезе. Участвует в реакциях переноса энергии.

Признаки недостатка магния начинают проявляться с нижних листьев, затем распространяются и на верхние. При недостатке этого элемента хлороз имеет характерный вид: у краев листа и между его жилками зеленая окраска изменяется не только на желтую, но и на красную и фиолетовую. Жилки и прилегающие к ним участки остаются зелеными. Листья при этом часто куполообразно выгибаются, так как у листа загибаются кончики и края.

Магниевым удобрением является препарат Калимаг .

На рынке макроудобрений присутствует большое количество удобрений, в которых бывает очень трудно разобраться и выбрать что-то подходящее. Качественно все удобрения отличаются тем, каков химический состав их компонентов, то есть насколько вещества, содержащие питательные элементы, быстро усваиваются растениями. Стоит отдавать предпочтение тем препаратам, которые содержат растворимые соли: монокалийфосфат, моноаммонийфосфат, сульфат калия, нитрат калия.

Микроэлементы в организме растения содержатся в значительно меньшем количестве, от 0,0001 до 0,01 %. К ним относятся: железо, марганец, медь, цинк, молибден, бор, никель, кремний, кобальт, селен, хлор и др. Как правило, это металлы переходной группы периодической системы элементов.

Микроэлементы не влияют на осмотическое давление клетки, не участвуют в образовании протоплазмы, их роль преимущественно связана с деятельностью ферментов. Все ключевые метаболические процессы, такие как реакции синтеза белков и углеводов, распада и обмена органических веществ, фиксация и ассимиляция некоторых главных питательных веществ (например, азота и серы) происходят при участии ферментов, которые обеспечивают их протекание при обычной температуре.

С помощью окислительно-восстановительных процессов ферменты оказывают регулирующее действие на дыхание растений, поддерживая его при неблагоприятных условиях на оптимальном уровне.

Под действием микроэлементов возрастает устойчивость растений к грибным и бактериальным болезням и таким неблагоприятным условиям внешней среды, как недостаток влаги в почве, пониженные или повышенные температуры, тяжелые условия зимовки.

Предполагается, что и сам синтез ферментов растений протекает при участии микроэлементов.

Исследования в области определения роли различных микроэлементов в метаболизме растений начались еще в середине 19 века. Детальное изучение началось с 30-х годов 20 века. Функция некоторых из микроэлементов до сих пор неясна и исследования в этой области продолжаются.

Железо (Fe) содержится в хлоропластах, является необходимым элементом многих ферментов. Участвует в важнейших биохимических процессах: в фотосинтезе и синтезе хлорофилла, метаболизме азота и серы, дыхании клетки, ее росте и делении.

Дефицит железа в растениях часто обнаруживается при избытке кальция в почве, что случается на карбонатных или кислых почвах после известкования. При недостатке железа развивается межжилковый хлороз молодых листьев. При нарастающем дефиците железа могут светлеть и жилки, лист бледнеет полностью.

Марганец (Mn) преобладает в метаболизме органических кислот и азота. Входит в состав ферментов, ответственных за дыхание растения, участвует в синтезе других ферментов. Активирует ферменты, ответственные за окисление, восстановление и гидролиз. Впрямую влияет на преобразование света в хлоропласте. Играет важную роль в механизме действия индолилуксусной кислоты на рост клеток. Участвует в синтезе витамина С.

Признаки недостатка марганца проявляются на молодых по возрасту листьях. Хлороз проявляется прежде у основания листа, а не на его концах (что напоминает дефицит калия). Затем, при нарастающем недостатке марганца, появляется межжилковый хлороз и, после отмирания хлорозной ткани, лист покрывается пятнами разной формы и окраски. Тургор листьев может быть ослабленным.

Марганцевая недостаточность усиливается при низкой температуре и высокой влажности почвы.

Медь (Cu) участвует в метаболизме белков и углеводов, активирует некоторые ферменты, участвует в фотосинтезе, важна в азотном обмене. Повышает устойчивость растения к грибным и бактериальным заболеваниям, защищает хлорофилл от распада. Для жизнедеятельности растения медь не может быть заменена другим элементом.

При недостатке меди на кончиках молодых листьев появляются белые пятна, они теряют тургор, опадают завязи и цветки. Растение имеет карликовый вид.

Цинк (Zn) участвует в образовании триптофана, предшественника ауксина (гормона роста), и в синтезе протеинов. Необходим для преобразования и потребления крахмала и азота. Повышает сопротивляемость растения к грибным заболеваниям, при резкой смене температуры повышает жаро- и морозоустойчивость растения.

При недостатке цинка в растениях нарушается синтез витаминов В1 и В6. Недостаток цинка проявляется чаще на старых нижних листьях, но, с нарастанием дефицита, желтеют и более молодые листья. Они становятся пятнистыми, затем ткань этих участков проваливается и отмирает. Молодые листья могут быть мелкими, их края закручиваются кверху.

Цинковые удобрения повышают засухо-, жаро- и холодоустойчивость растений.

Молибден (Mо) входит в состав фермента, превращающего нитраты в нитриты. Необходим растению для фиксации азота. Под его влиянием в растениях увеличивается содержание углеводов, каротина и аскорбиновой кислоты. Увеличивается содержание хлорофилла и активность фотосинтеза.

При недостатке молибдена у растения нарушается азотный обмен, у старых, а затем у средних по возрасту листьев появляется крапчатость. Участки такой хлоротичной ткани затем вздуваются, края закручиваются вверх. На верхушках листьев и по их краям развивается некроз.

Бор (B) участвует в синтезе РНК и ДНК, в образовании гормонов. Необходим для нормальной жизнедеятельности точек роста растения, т. е. самых молодых его частей. Он влияет на синтез витаминов, цветение и плодоношение, созревание семян. Усиливает отток продуктов фотосинтеза из листьев в луковицы и клубни. Необходим для водообеспечения растения. Бор необходим растениям в течение всего вегетационного периода. Для жизнедеятельности растения бор не может быть заменен другим элементом.

При недостатке бора у растений поражается точка роста, отмирают как верхушечные почки, так и молодые корешки, разрушается сосудистая система. Молодые листья бледнеют, становятся курчавыми. Усиленно развиваются боковые побеги, но они очень ломкие, цветки опадают.

Хлор (Cl) является активатором ферментов, которые при фотосинтезе высвобождают кислород из воды. Регулятор тургора клетки, способствует засухоустойчивости растений.

У растений чаще проявляются признаки не недостатка, а избытка хлора, выраженные в преждевременном засыхании листьев.

Некоторые макро- и микроэлементы могут взаимодействовать, что приводит к изменению их доступности для растения. Вот некоторые примеры такого влияния:

Цинк-фосфор , высокий уровень доступного фосфора провоцирует дефицит цинка.

Цинк-азот , высокий уровень азота провоцирует дефицит цинка.

Железо-фосфор , избыток фосфора приводит к образованию нерастворимого фосфата железа, т.е. недоступности железа для растения.

Медь-фосфор, избыток фосфора приводит к образованию нерастворимого фосфата меди, то есть возникновению дефицита меди.

Молибден-сера , усвоение молибдена растениями уменьшается при избытке серы.

Цинк-магний , при использовании карбоната магния происходит увеличение pH почвы и образование нерастворимых соединений цинка.

Железо-марганец , избыток марганца препятствует продвижению железа от корней растения вверх, приводя к железистому хлорозу.

Железо-молибден , в низких концентрациях молибден способствует усвоению железа. При высоких же концентрациях взаимодействует с ним, образуя нерастворимый молибдат железа, что приводит к дефициту железа.

Медь-азот , внесение больших доз азотных удобрений повышает потребность растений в меди и усиливает симптомы медной недостаточности.

Медь-железо, избыток меди провоцирует дефицит железа, особенно у цитрусовых.

Медь-молибден, избыток меди препятствует усвоению молибдена и повышает уровень нитратов в растении.

Медь-цинк , избыток цинка приводит к дефициту меди. Механизм этого влияния в настоящее время не изучен.

Бор-кальций , имеются данные, что при недостатке бора растения не могут нормально использовать кальций, который в почве может находиться в достаточном количестве.

Бор-калий, размеры поглощения и накопления бора растениями возрастают с увеличением в почве калия.

В настоящее время ведутся работы по изучению роли в физиологии растений таких элементов, как мышьяк (As), ртуть (Hg), фтор (F), иод (I) и др. Эти элементы были обнаружены в растениях в еще более незначительных количествах. Например, в некоторых антибиотиках, вырабатываемых растениями.

Дефицит элементов впрямую связан со свойством почвы: на очень кислых или щелочных почвах растения, как правило, испытывают дефицит микроэлементов. К этому же приводит избыток в них фосфатов, азота, карбоната кальция, оксидов железа и марганца.

Недостаток микроэлементов в почве не обязательно приводит к гибели растения, но является причиной снижения скорости и согласованности протекания процессов, ответственных за развитие организма.

Симптомы недостаточности конкретного элемента могут быть весьма характерны и наиболее часто проявляются в хлорозе. Хотя объективно для выявления дефицита какого-то элемента требуется анализ почв и тканей растений.

Диагностика недостаточности отдельных элементов по внешнему виду растения для неспециалиста представляет трудности:

Изменение внешнего вида растения, сходного с недостатком элементов, может быть вызвано поражением вредителями, болезнями или неблагоприятными факторами: температурой, заливом или пересушенностью земляного кома, так же недостаточной атмосферной влажностью;

Внешние признаки минерального голодания, вызванного дефицитом конкретного элемента, у разных растений могут несколько отличаться (например, симптомы недостатка серы у винограда и бобовых). А конкретно для хой этот вопрос вообще не изучен;

В случае недостатка нескольких питательных элементов внешние признаки накладываются, растение восполняет прежде всего недостаток того элемента, которого недостает больше. Признаки недостатка другого элемента остаются, внешне хлороз растения продолжается;

Для определения того, какого элемента растению не хватает, необходима динамика в изменении внешних признаков, а она различна при нехватке разных элементов. Любители на изменения в характере проявлений обращают мало, что диагностику затрудняет;

Питательные элементы в почве присутствуют, но недоступны растению из-за ее неподходящей кислотности.

Для того, чтобы по внешним признакам определить, какого конкретно элемента питания растению недостает, вначале следует обратить внимание на то, на каких листьях, молодых или старых, проявляются симптомы дефицита.

Если они проявляются на старых листьях, можно предположить недостаток азота, фосфора, калия, цинка или магния. Эти элементы при недостатке их в растении перемещаются от старых частей к молодым, растущим. И в них признаков голодания не заметно, в то время как на нижних листьях проявляется хлороз.

Если симптомы дефицита проявляются в точках роста или на молодых листьях, можно предположить недостаток кальция, бора, серы, железа, меди и марганца. По-видимому, эти элементы не способны перемещаться по растению из его одной части в другую. И если в почве этих элементов мало, растущие части их не получают.

Поэтому любителям в ситуации, когда у их растений начинается хлороз, но они уверены, что растение здорово и находится в благоприятных условиях, следует провести обработку своего растения целым комплексом макро- или микроэлементов. При выборе препаратов следует понимать, что эффективность воздействия микроэлемента на растение прямо зависит от формы, в которой он пребывает. И недостаточное поступление микроэлементов в растение нередко связано с нахождением их в почве в нерастворимой, недоступной для растения форме.

О том, какие виды микроудобрений предлагает рынок.

Прежде всего, на рынке присутствует множество микроудобрений, представляющих собой растворимые минеральные (неорганические)соли этих элементов (сульфат магния, сульфат цинка и пр.). Их применение относительно недорого, но имеет ряд серьезных недостатков:

Эти соли растворимы, то есть доступны растениям, только в почвах со слабокислой и кислой почвой;

При использовании растворимых солей микроэлементов происходит засаливание почвы различными катионами и анионами (Na, Cl);

При смешивании различных солей металлов возможно их взаимодействие с образованием нерастворимых солей, то есть недоступных растениям соединений.

Потому более перспективным является применение натриевых и калийных солей гуминовых кислот. Они являются слабыми природными хелатами и хорошо растворимы.

Гуминовые препараты Гумат+7 , Гумисол , ГроуАП Энерджи , Лигногумат , Вива и др. содержат 60-65% гуматов (в сухом виде) и семь основных микроэлементов (Fe, Си, Zn, Mn, Mo, Co, В) в виде комплексных соединений с гуминовыми кислотами. Они могут содержать макроэлементы и витамины. Получают эти удобрения обработкой торфа или бурого угля раствором щелочи при высокой температуре и извлечением из него основного продукта. По своей сути эти удобрения являются органическими, микроэлементов в них не содержится больше, чем в навозе, и они не могут рассматриваться полноценной микроэлементной подкормкой.

Наибольшего внимания заслуживают микроэлементы в хелатной форме (хелаты) . И прежде, чем говорить о конкретных названиях микроудобрений в этой форме, следует остановиться на том, что такое хелаты. Они получаются при взаимодействии металлов (микроэлементов) с природными или синтетическими органическими кислотами определенного строения (их называют комплексонами, хелантами или хелатирующими агентами). Получающиеся устойчивые соединения называют хелатами (от греч. «chele» — клешня) или комплексонатами.

При взаимодействии с металлом органическая молекула как бы захватывает металл в «клешню», а мембрана клетки растения распознает этот комплекс как вещество, родственное своим биологическим структурам, и далее ион металла усваивается растением, а комплексон распадается на более простые вещества.

Основная идея применения комплексонов для улучшения растворимости удобрительных солей построена на том, что многие хелаты металлов имеют большую растворимость (иногда на порядок), чем соли неорганических кислот. Учитывая также, что в хелате металл находится в полуорганической форме, для которой характерна высокая биологическая активность в тканях растительного организма, можно получить удобрение гораздо лучше усваиваемое растением.

Кислоты, наиболее часто используемые при производстве хелатных микроудобрений, можно разделить на две группы. Это комплексоны, содержащие в своем составе карбоксильные группы :

  • ЭДТА (этилендиаминтетрауксусная кислота), синоним: комплексон-III, трилон-Б, хелатон III.
  • ДТПА (диэтилентриаминпентауксусная кислота)
  • ДБТА (дигидроксибутилендиаминтетрауксусная кислота)
  • ЭДДНМА (этилендиаминди (2-гидрокси-4-ме-тилфенил) уксусная кислота)
  • ЛПКК (лигнинполикарбоксиловая кислота)
  • НТА (нитрилотриуксусная кислота)
  • ЭДДЯ (этилендиаминдиянтарная кислота)

и комплексоны на основе фосфоновых кислот :

  • ОЭДФ (оксиэтилидендифосфоновая кислота)
  • НТФ (нитрилтриметиленфосфоновая кислота)
  • ЭДТФ (этилендиаминтетрафосфоновая кислота)

Из комплексонов, содержащих карбоксильные группы, наиболее оптимальной является ДТПА , она позволяет использовать комплексонаты (особенно железа) на карбонатных почвах и при рН выше 8, где другие кислоты малоэффективны.

На нашем рынке, как и за рубежом (Голландия, Финляндия, Израиль, Германия), подавляющее большинство препаратов основывается на ЭДТА . Это связано, прежде всего, с ее доступностью и относительно низкой стоимостью. Хелаты на ее основе можно использовать на почвах с рН меньше 8 (комплекс железа с ЭДТА эффективен при борьбе с хлорозом только на умеренно-кислых почвах; в щелочной же среде он нестабилен). Кроме того хелаты с ЭДТА разлагаются почвенными микроорганизмами, что приводит к переходу микроэлементов в нерастворимую форму. Данные препараты проявляют противовирусную активность.

Хелаты на основе ЭДДНМА являются высокоэффективными, их можно использовать в интервалах рН от 3,5 до 11,0. Однако стоимость этого комплексона, а значит и микроудобрения, велика.

Из комплексонов, содержащих фосфоновые группы, наиболее перспективной является ОЭДФ . На ее основе могут быть получены все индивидуальные комплексонаты металлов, применяемых в сельском хозяйстве, а также композиции различного состава и соотношения. По своей структуре она наиболее близка к природным соединениям на основе полифосфатов (при ее разложении образуются химические соединения, легко усваиваемые растениями). Хелаты на ее основе можно использовать на почвах с рН 4,5-11. Отличительная черта этого комплексона в том, что он может, в отличие от ЭДТА, образовывать устойчивые комплексы с молибденом и вольфрамом. Однако ОЭДФ является очень слабым комплексоном для железа, меди и цинка, в прикорневой зоне они замещаются кальцием и выпадают в осадок. По этой же причине недопустимо приготовление рабочих растворов хелатов на основе ОЭДФ в жесткой воде (ее нужно подкислить несколькими каплями лимонной или уксусной кислоты). ОЭДФ устойчива по отношению к действию микроорганизмов почвы.

В настоящее время ведутся исследования хелатирующих свойств гумусовых (гуминовых и фульвокислот) а так же аминокислот и коротких пептидов .

Однозначного ответа на вопрос, какой комплексон следует использовать для получения биологически активных микроэлементов, дать невозможно: сами комплексоны для растений практически инертны. Главная роль принадлежит катиону металла, а комплексон играет роль транспортного средства, обеспечивающего доставку катиона и его устойчивость в почве и питательных растворах. Но именно комплексоны определяют в конечном счете эффективность удобрения в целом, то есть степень усвоения микроэлементов растениями. Если сравнивать усвоение растениями микроэлементов из неорганических солей и их хелатных соединений, то соединения на основе лигнинов (например, Брексил от Валагро) усваиваются в 4 раза лучше, на основе цитратов в 6 раз, а на основе ЭДТА, ОЭДФ, ДТПА - в 8 раз лучше.

Согласно Директиве Евросоюза ЕС 2003/2003 от 13 октября 2003г. (это документ, регламентирующий деятельность всех без исключения европейских производителей минеральных удобрений), к свободному товарообороту в странах ЕС допустимы следующие хелатирующие агенты: EDTA, DTPA, EDDHA, HEEDTA, EDDHMA, EDDCHA, EDDHSA. Все другие виды хелатирующих агентов подлежат обязательной регистрации в соответствующих государственных инстанциях отдельно в каждой стране.

Согласно Директиве, константа устойчивости хелатов микроэлементов, выраженная в %, должна быть не меньше 80. В химии комплексных соединений константа устойчивости характеризует прочность комплексного соединения и указывает, каково соотношение хелатированного микроэлемента и его свободного катиона в удобрении. В рекламных же материалах появился неизвестный химикам термин «процент хелатизации».

Следует с осторожностью относиться к рекламной информации. Не стоит основывать свои знания о продукте исключительно на рекламных проспектах - производитель удобрений не несет ответственности за описанную в рекламе информацию. Основной и наиболее достоверной информацией о продукте является его ЭТИКЕТКА. Производитель удобрений обязан на этикетке указать, какой хелатирующий агент использовался для образования хелата того или иного микроэлемента.

Производитель, особенно отечественный, тем не менее не всегда указывает на упаковке название комплексона, который он использовал для производства микроудобрения. Но, неукоснительно следуя инструкции, удобрение можно максимально эффективно использовать: если указано, что предпочтительнее листовая обработка, нужно этому следовать, видимо эти хелаты сильно зависят от кислотности почвы или разрушаются почвенной микрофлорой. Если возможен и полив растений, значит хелаты стойки к перечисленным факторам.

Способы применения микроудобрений могут быть различными:

Предпосевная обработка семян (путем опыления или увлажнения);

Некорневая подкормка в течение вегетации (так называемый фолиарный или листовой метод);

Полив рабочими растворами микроудобрений.

Самыми рациональными и экономически выгодными являются первые два приема. В этих случаях растения используют 40-100% всех микроэлементов, но при внесении их в почву растения усваивают лишь несколько процентов, а в некоторых случаях даже десятые доли процента от внесенного в почву микроэлемента.

По физическому состоянию микроудобрения могут быть:

Жидкими, это растворы или суспензии с содержанием металлов 2-6%;

Твердыми, это кристаллические или порошкообразные вещества с содержанием металлов 6-15%.

По составу микроудобрения бывают:

1. Удобрения NPK + микроэлементы в хелатной форме, которые содержат различные комбинации макроэлементов N, P, K (возможны так же Mg, Ca, S) и фиксированное во всем ассортиментном ряду количество микроэлементов.

2. Препараты, содержащие только микроэлементы, которые в свою очередь тоже подразделяются на:

  • комплексные - содержащие композицию микроэлементов в определенной пропорции;
  • моноудобрения (хелаты моноэлементов) - соединения отдельных металлов: железа, цинка, меди. Как правило, они используются при появлении симптомов болезней, связанных с недостатком конкретного элемента.

3. Удобрения, содержащие помимо микроэлементов биологически активные вещества: стимуляторы, ферменты, аминокислоты и пр.

Из удобрений NPK + микроэлементы в продаже есть несколько препаратов компании ННПП «Нэст М» (Россия): Цитовит (N, P, K, Mg, S, Fe, Mn, B, Zn, Cu, Mn, Co) и Силиплант (Si, K, Fe, Mg, Cu, Zn, Mn, Mo, Co, B). Нужно заметить, что это первое отечественное микроудобрение, которое содержит кремний (калий в препарате присутствует для более эффективного его усвоения). Он выпускается в нескольких наименованиях с разным соотношением микроэлементов.

Буйский химический завод (Россия) изготавливает препарат Акварин (№5, №13, №15).

Компания ВАЛАГРО (Италия) предлагает удобрения Мастер (16 наименований, из которых наиболее интересны «18+18+18+3», «13+40+13», «15+5+30+2», «3+11+38+4»), Плантафол (в единой пропорции микроэлементов + вариации NPK) и Брексил Микс .

Хотелось бы отметить, что данные удобрения надо рассматривать скорее как корректоры минерального питания, а не как источник микроэлементов.

Из препаратов, содержащих только микроэлементы , ННПП «Нэст М» (Россия) предлагает Феровит (содержание хелатного железа не менее 75 г/л, N-40 г/л).

Фирма Реаком (Украина) предлагает микроудобрение Реаком-Миком (комплексоном является ОЭДФ) с разным соотношением основных микроэлементов (Fe, Mn, Zn, Cu, Co, Mo) и B , предназначенное под потребности самых различных культур: томатов, огурцов, винограда, цветочных культур.

Компания ВАЛАГРО производит так же микроудобрения в виде однокомпонентных формул, таких как Брексил Zn , Брексил Fe , Брексил Mg , Брексил Mn , Брексил Сa (хелаты этих удобрений изготовлены на основе комплексона ЛПКК).

К микроудобрениям с добавлением биостимуляторов относится препарат от фирмы Реаком (Украина) под торговой маркой Реастим, который представляет собой комплекс микроудобрений с известными стимуляторами роста (гетеро- и гипероауксинами, янтарной кислотой, гиббериллином, гуминовыми кислотами и др.).

ООО «Наномикс» (Украина) выпускает жидкое микроудобрение Наномикс , содержащее хелаты Fe, Mn, Zn, Cu, Co, Mg, Ca, Мо, (плюс В и S) с добавкой природных биостимуляторов-адаптогенов на базе поликарбоновых кислот. В качестве комплексонов использованы ОЭДФ и ЭДДЯ (что позволяет использовать удобрение на кислых, нейтральных и слабо щелочных почвах). Препарат для обработки семян включает так же стимулятор роста корневой системы - гетероауксин.

Питание растений зависит как от внешних факторов (свет, тепло, состав почвы), так и от того, в какой фазе развития находится растение (в фазе роста, цветения, состоянии покоя). Поэтому при покупке удобрений следует обращать внимание на то, в каком соотношении в нем находятся питательные элементы. Так повышенное содержание азота необходимо растению весной, в фазе активного роста. Летом для цветения и плодоношения в удобрении должно содержаться больше фосфора. Осенью для вызревания молодых побегов в удобрении совсем не должно быть азота, а калий должен присутствовать в повышенной концентрации. Зимой комнатные растения удобряются крайне редко (и в низкой концентрации), т. к. в состоянии покоя растение не потребляет много питательных веществ. Их внесение может обжечь корни или в условиях повышенной температуры и короткого светового дня спровоцирует рост, который будет ослабленным.

Минеральное питание растений

Для нормального жизнедеятельного цикла растительного организма необходима определённая группа питательных элементов, функции которых в растении не могут быть заменены другими химическими элементами.

Это: 1) органогены – С (45 % сухой массы); О (42%); Н (6,5 %); N (1,5 %) - в сумме 95 %;

2) макроэлементы (1 – 0,01 %): P, S, K, Ca, Mg, Fe, Al, Si, Cl, Na;

3) микроэлементы (0,01 – 0,00001 %) : Mn, Cu, Zn, Co, Mo, B, I;

4) ультрамикроэлементы (< 0,00001 %): Ag, Au, Pb, Ge….и др.

Ю. Либихом было установлено, что все перечисленные элементы равнозначны и полное исключение любого из них приводит растение к глубокому страданию и гибели, ни один из перечисленных элементов не может быть заменен другим, даже близким по химическим свойствам. Макроэлементы при концентрации 200-300 мг/л в питательном растворе еще не оказывают вредного действия на растение. Большинство микроэлементов при концентрации 0,1-0,5 мг/л угнетают рост растений.

Для нормальной жизнедеятельности растений должно быть определенное соотношение различных ионов в окружающей среде. Чистые растворы одного какого-либо катиона оказываются ядовитыми. Так, при помещении проростков пшеницы на чистые растворы KCL или CaCL 2 на корнях сначала появлялись вздутия, а затем корни отмирали. Смешанные растворы этих солей не обладали ядовитым действием. Смягчающее влияние одного катиона на действие другого катиона называют антагонизмом ионов . Антагонизм ионов проявляется как между разными ионами одной валентности, например, между ионами натрия и калия, так и между ионами разной валентности, например, калия и кальция. Одной из причин антагонизма ионов является их влияние на гидратацию белков цитоплазмы. Двухвалентные катионы (кальций, магний) дегидратируют коллоиды сильнее, чем одновалентные (натрий, калий). Следующей причиной антагонизма ионов является их конкуренция за активные центры ферментов. Так, активность некоторых ферментов дыхания ингибируется ионами натрия, но их действие снимается добавлением ионов калия. Кроме того, ионы могут конкурировать за связывание с переносчиками в процессе поглощения. Действие одного иона может и усиливать влияние другого иона. Это явление называется синергизмом . Так, под влиянием фосфора повышается положительное действие молибдена.

Физиологическое значение микро- и макроэлементов


1. Входят в состав биологически важных питательных веществ;

2. Участвуют в создании определённой ионной концентрации и стабилизации макромолекул;

3. Участвуют в каталитических реакциях, входя в состав или активируя отдельные ферменты.

Азот (N 2)

Входит в состав белков, нуклеиновых кислот, фосфолипидов мембран, порфиринов (основа хлорофилла и цитохромов), многочисленных ферментов (в т.ч. NAD и NADP) многих витаминов.

При недостатке азота в среде тормозится рост растений, ослабляется образование боковых побегов, наблюдается мелколистность и бледно-зелёная окраска листьев вследствие разрушения хлорофилла.

Несмотря на наличие в атмосферном воздухе 78 % N 2 (410 5 т), такой молекулярный азот не усваивается высшими растениями (молекула азота (NN) химически инертна; для разрыва трех ее ковалентных связей в химическом процессе синтеза аммиака требуются катализаторы, высокие температура и давление) и может переходить в доступную для них форму только благодаря деятельности микроорганизмов-азотфиксаторов. Из литосферных запасов азота (1810 15 т) в почве сосредоточена лишь его минимальная часть, из которой лишь 0,5 – 2 % прямо доступно растениям: - это NH 4 + и NO 3 - -ионы, образующиеся в результате минерализации бактериями органического азота растительных и животных остатков и гумуса. А именно, процессов:

1. Аммонификации (превращение органического азота в NH 4 +);

2. Нитрификации (окисление NH 4 + до NO 3 -);

3. Денитрификации (анаэробное восстановление NO 3 - до N 2)

Фиксация молекулярного азота ( N 2)

Химическое связывание молекулярного азота в форме NH 4 + или NO 3 - осуществляется либо в результате электрических разрядов в атмосфере, либо в присутствии катализатора при температуре более 500 0 С и атмосферном давлении около 35 МПа.

Биологическое связывание молекулярного азота атмосферы осуществляется азотфиксирующими микроорганизмами. Они бывают:

1. Свободноживущие (р. Azotobacter, Beijrinckia – аэробные и р. Clostridium – анаэробные);

2. *Симбиотические (р. Rhizobium, образующий клубеньки на корнях бобовых растений, и некоторые актиномицеты).

*Инфицирование растения хозяина симбиотическими бактериями начинается с проникновения бактерии в клетку корневого волоска, миграции в клетки коры и интенсивного деления инфицированных клеток, что приводит к образованию клубеньков на корнях. При этом сами бактерии превращаются в бактероиды , которые в 40 раз больше по размеру, чем исходная бактерия. Основная роль в процессе азотфиксации принадлежит ферменту нитрогеназе . Фермент состоит из двух компонентов: более высокомолекулярного Fe-Mo белка (Мr = 200-250 000, 2 молекулы Mo, 30 молекул Fe и 22 молекулы S) и Fe-белка (Мr = 50-70 000, 4 молекулы Fe и 4 молекулы S). Fe-Mo белок служит для связывания и восстановления молекулярного азота, а Fe-белок служит источником электронов для восстановления Fe-Mo белка, которые он получает от ферредоксина. Весь комплекс работает только в присутствии гидролиза АТР и защитного действия белка легоглобина (синтезируется клетками хозяина и защищает нитрогеназу от кислорода).

Образующийся NH 4 + , связывается с кетокислотами, образуя аминокислоты, транспортируемые в клетки растения-хозяина.

Редукция нитрата и пути ассимиляции аммиака

Так как в органические соединения включается только аммонийный азот, нитрат-ионы NO 3 - , поглощаемые корнем, должны восстанавливаться в клетках до аммиака. Осуществляется это в два этапа:

1. Восстановление нитрата до нитрита, катализируемое нитратредуктазой (в цитоплазме); NO 3 - ---2 e---- NO 2 -

2. Восстановление нитрита до аммиака, катализируемое нитритредуктазой (в хлоропластах). NO 2 - ---- 6e--- NH 4 +

Аммиак, образующийся при восстановлении нитратов или в процессе фиксации молекулярного азота, далее усваивается растениями с образованием различных аминокислот. В первую очередь акцептором NH 4 + является α-кетоглутаровая кислота, которая под действием глутаматдегидрогеназы превращается в глутамат.

Эффективность удобрений. Часто виноградари задаются вопросом: почему ягоды мелкие, кислые, слабо окрашены? Почему запаздывает созревание ягод, лоза плохо вызревает? Ответ на этот вопрос находится в сбалансированном питании, наличии воды, солнечного света и тепла. Без воды, углерода, азота и магния не будет процесса образования хлорофилла, а следовательно, и роста растения. Без углерода, водорода и кислорода не будет моносахаридов. Без азота, углерода, водорода, кислорода и минеральных элементов моносахариды не превращаются в полисахариды, аминокислоты, белки, ароматические и красящие вещества. Ниже пойдёт речь о путях достижения максимального эффекта в виноградарстве.

Главной задачей получения высоких урожаев винограда, является обеспечение кустов одновременно и в нужных количествах элементами питания, водой, солнечным светом, теплом и воздухом.

Говоря о пользе минеральных удобрений, необходимо помнить о том, что они эффективны только в нужном количестве и соотношении. Внёс в почву удобрения в количестве меньше нужного – кустам почти ничего не достанется, т.к. часть их свяжет почва, съедят микроорганизмы, унесёт вода. Дал удобрений больше нормы – можно навредить почве, ухудшить качество урожая. Вред минеральных удобрений в какой-то мере проявляется в том, что они вносятся в почву в солевой, а не в хелатной форме. Хелаты (в переводе с греческого – клешня) – это такие растворы которые, как клешнёй, удерживают ионы металлов в изолированном виде. Попав на лист, хелаты переносят ион металла в ткани и только там его освобождают. Таким образом, металлы хелатами доставляются в усвояемой форме в нужное место и полностью усваиваются растениями без потерь. А соли удобрений, попадая в органы куста, не могут быть усвоены растением в таком виде и накапливаются в нём. К ним также относятся нитраты NO 4 и аммиак NH 3 .

Усвоение растениями элементов питания. Минеральные элементы усваиваются растениями только в растворённом виде, а растворяются они в почве под действием кислот, образующихся под действием микроорганизмов.

Почва состоит из минеральной и органической (гумуса) частей. Гумус – это перегной, образовавшийся в результате отмирания растительных остатков и животных организмов, а также разложения продуктов жизнедеятельности живых организмов. Смешанный с измельчённой породой, гумус образовал почву. Таким образом, почва состоит из минеральной (90-99% от всей массы почвы) и органической части (Иванцов Д.В. « Как восстановить плодородие почвы», Новосибирск, «ПО Сияние», 2003г.). Органическая часть - гумус является источником питательных веществ для растений. Органические вещества растениями не усваиваются, они их усваивают только после их минерализации, т.е. после преобразования органических веществ в неорганические – минеральные. Минерализация органического вещества в доступные для растений формы происходит в результате жизнедеятельности населяющих почву микроорганизмов. При этом выделяется углекислый газ СО 2 , который из почвы уходит в атмосферу, обогащая углеродом её приземную часть, и ассимилируется растениями в процессе фотосинтеза. Часть углекислого газа при соединении с водой в почве образует угольную кислоту Н 3 СО 4 , которая является растворителем минеральных удобрений, а последние, потребляются растениями только в растворённом виде.

Углекислый газ через устьица поступает из воздуха в листья. В процессе фотосинтеза углекислый газ расщепляется на углерод и кислород. Кислород выделяется листьями в воздух, обогащая атмосферу. Без углекислого газа в листьях не синтезируется сахар, а без кислорода в почве задыхаются корни.

Растения для питания используют 19 химических элементов. Из выше упомянутого источника известно, что зелёная масса растений в общем понимании состоит из воды – около 90%, углерода – 5%, кислорода – 2%, азота – 1,5%, водорода – 0,8% и различных минеральных элементов в общем объёме – 0,7%. Из минеральных веществ растениям необходимы фосфор, калий, магний, кальций, натрий, сера, железо, медь, бор, цинк, марганец, молибден, кобальт и йод.

Нагляднее картина выглядит при пересчёте на сухое вещество. В сухом веществе растений содержится углерода – 50%, кислорода – 20%, азота – 15%, водорода – 8% и минеральных веществ – 7%. Таким образом, основную массу элементов питания растения берут из атмосферного воздуха, а это углерод и кислород в виде углекислого газа, что составляет 70% от всего объёма сухого вещества. Больше всего в растении углерода. Его требуется в 7 раз больше, нежели всех остальных макро- и микроэлементов вместе взятых. В атмосфере также содержатся азот и водород, но растения их в молекулярной форме не усваивают, а это означает, что азот и водород в растения из воздуха не поступает. Их они усваивают из почвы. Поэтому почва должна быть богатой азотом, т.к. из всех элементов, усваиваемых растениями из почвы, азот составляет наибольший объём. Недостающие вещества – азот, водород и минеральные элементы растения берут из почвы вместе с водой в растворённом виде. Из почвы также поступают и остальные минеральные вещества. Минеральные вещества, усваиваемые растениями, находятся в ионном виде. Металлы в растворах присутствуют в виде положительно заряжённых ионов: K + , Mg + , Na + , Ca 2+ и иона аммония NH 4 + , а также др. Ионы неметаллов и кислотных остатков находятся в виде отрицательно заряженных ионов: SO 4 2- , Cl - , CO 3 2- , PO 4 3- и нитрат ион N О 3 - .

В почве всегда содержатся питательные вещества. Однако, какой бы ни была богатой питательными веществами почва, рано или поздно она начинает истощаться, вследствие выноса их урожаем. Питательные вещества из почвы выносятся вместе с урожаем и в почву не возвращаются. В результате нарушения кругооборота питательных веществ на виноградниках и садовых участках, почва истощается. Не восполнение питательных веществ в почве приводит к ослаблению растений и снижению урожайности.

Для восполнения питательных веществ необходимо вносить в почву минеральные удобрения. Но минеральные удобрения не содержат углерод. Он содержится в небольших количествах только в мочевине. Углерод также в небольших количествах содержится в золе. Поэтому внесение в почву только минеральных элементов не влияет на образование в почве углекислого газа и кислорода, преобладающих в общем объёме питательных веществ растений.

Кислород должен поступать в почву, т.к. он необходим корням. В листьях кислород образуется при разложении углекислого газа и воды. Из почвенного воздуха корни винограда потребляют кислород. При уплотнении почвы затрудняется поступление атмосферного воздуха по почвенным каналам. При плотности почвы выше 1,4т/м 3 , из-за снижения количества воздуха в ней, виноградные кусты развиваются слабо и дают низкие урожаи, а при 1,7т/м 3 виноград не растёт.

Для растворения минеральных удобрений в почве должна быть угольная кислота, а для её образования в почве должен присутствовать углекислый газ. Но углекислый газ в почве образуется в результате разложения органического вещества. Внесённые без органики минеральные удобрения окажутся без углекислого газа в почве, т.е. без угольной кислоты и не смогут раствориться до ионов для усвоения растениями. Следовательно, для усвоения растениями минеральных удобрений необходимо периодически вносить в почву и органику. Повысить в почве содержание органических веществ, богатых азотом и углеродом, можно внесением в почву навоза, компоста, растительных остатков. Соотношение углерода и азота в различных органических материалах указано в таблице 2.

Таблица 2. Соотношение углерода к азоту в органических материалах (по Иванцову Д.В. 2003г).

п.п. Органические материалы Соотношение C:N

Навозный компост, перегной

10: 1

Навоз свежий

20-30: 1

Газонная трава

12-20: 1

Овощные отходы, ботва

13: 1

Зелёная масса бобовых растений

5-25: 1

Смешанные садовые отходы

20: 1

Смешанные кухонные отходы

23: 1

Листва

40-50: 1

Солома

50-125: 1

Опилки древесные

500: 1

Углерод и азот. Виноградари и садоводы замечали, что при внесении в почву измельчённой виноградной лозы или некомпостированных древесных опилок наблюдается ослабление роста растений. Это происходит по следующей причине. При внесении или мульчировании почвы органикой с высоким содержанием углерода, происходит связывание почвенного азота микроорганизмами, т.к. в таких условиях микроорганизмы резко размножаются и потребляют азот для питания, а это приводит к дефициту азота для растений в почве. Особенно это наглядно проявляется при использовании для разрыхления почвы древесных опилок, стружки, сухой листвы, соломы, коры и растительной шелухи. При внесении в почву органики необходимо обеспечивать соотношение углерода к азоту в почве. Оптимальным соотношением углерода к азоту (С: N ) является 30: 1, что достигается различными добавками. Более старые, одревесневшие материалы считаются богатыми углеродом, а в свежих частях зелёных растений преобладает азот. Поэтому грубые органические отходы, древесную стружку и опилки, богатые углеродом, в качестве мульчи или рыхлителя в чистом виде можно применять в ограниченных количествах только осенью. При компостировании стружки и опилок их необходимо предварительно полить раствором аммиачной селитры или мочевины, для обогащения азотом и ускорения процессов разложения.

Вода. Основной составляющей вегетирующих растений, как было отмечено выше, является вода. С помощью воды растения всасывают из почвы питательные элементы. Чем больше дефицит воды, тем хуже развиваются растения. Без воды не происходит фотосинтез, т.к. при недостатке воды листья растений закрывают устьица, чтобы предотвратить испарение влаги. А это приводит к прекращению потребления углекислого газа листьями из воздуха. К тому же, из-за прекращения испарения листьями влаги снижается отвод тепла, листья в жару слабо охлаждаются, перегреваются и возникает ожог листьев. Это приводит к заболеванию кустов винограда апоплексией – внезапному подсыханию кромки листьев винограда. Такое явление чаще всего наблюдается в засуху в конце июля – августе в жаркую сухую погоду. Особенно апоплексия проявилась в 2005г. Чем меньше воды, тем слабее синтезируются органические вещества, тем хуже развиваются растения.

Естественное восполнение азота в почве. Что же касается естественного восполнения питательных элементов в почве, то картина выглядит следующим образом. Во время атмосферных осадков в виде грозовых дождей в атмосфере, вследствие грозовых разрядов атмосферный молекулярный азот окисляется сначала до окиси азота NO и далее до двуокиси азота NO 2. В присутствии кислорода и воды (дождя) двуокись азота образует азотную кислоту HNO 3, которая с водой попадает в почву. Таким образом, с атмосферными осадками на 1м 2 почвы за год попадает 0,25-0,4г связанного азота. Еще за счет деятельности азотфиксирующих микроорганизмов в почве образовывается от 0,5 до 1,5г/м 2 связанного азота. При выращивании в междурядьях зернобобовых, люцерны и клевера азотфиксирующие бактерии могут восполнить фиксированного азота в почве от 10 до 20г/м 2 (Ю.Н.Кукушкин «Химия вокруг нас» М. «Высшая школа», 1992г). Конечно же, при такой раскладке дефицит азота в почве, создаваемый выносом урожая и срезанной лозой (6,5г/кг), на винограднике не может быть восполнен. Его необходимо дополнительно вносить с минеральными удобрениями и органикой.

Усвоение азота растениями. Растения усваивают из почвы азот, связанный в виде ионов NH 4 + и NO 3 - . Азотные удобрения подразделяются на аммиачные – аммиак NH 3, сернокислый аммоний (NH 4) 2 SO 4 ; нитратные – селитры аммиачная NH 4 NO 3 , натриевая NaNO 3 , калиевая KNO 3 , и кальциевая Ca (NO 3) 2 ; амидные - мочевина NH 2 CONH 2 . Аммиачные удобрения в почве разлагаются на ионы аммония NH 4 + , которые в свою очередь, как и аммиак, превращаются в нитраты в виде ионов NO 4 + и NO 3 - . Нитраты легко вымываются из почвы водой. Около 13% нитратного азота уходит в подземные воды с нисходящим током воды. Нитраты в виде ионов NO 4 + и NO 3 - легко усваиваются растениями, Они, попадая в листья с почвенным раствором, в процессе фотосинтеза расщепляются до свободных атомов с последующим синтезом органических (пластических) веществ.

В аммиачной селитре половина азота содержится в аммиачной форме, которая практически из почвы не вымывается и усваивается растениями медленно. Вторая половина азота содержится в нитратной форме. Нитраты почвой не связываются, и поэтому легко вымываются из почвы водой. Аммиачная селитра – в нитратной её части является быстродействующим азотным удобрением, а аммиачная её часть действует медленно, т.е. продолжительное время.

Мочевина, при внесении в почву, разлагается в растворённом виде постепенно, превращаясь в аммиак и углекислый газ. Так как она разлагается постепенно, то и аммиак поступает в растения тоже длительное время. Мочевина является долгодействующим (пролонгированным) азотным удобрением.

Азот входит в состав аминокислот, из которых образуются белки. Он также содержится в хлорофилле растений.

Фосфор и калий. С наибольшей скоростью почва истощается азотом, фосфором и калием. Калий частично возвращается в почву при условии компостирования и внесении в почву листьев и ботвы, но всё же это не восполняет его выноса с урожаем.

Что же касается фосфора, то его необходимо только восполнять в почве путём дополнительного внесения фосфорных удобрений. В воздухе фосфор не содержится, а в почве его очень мало. К тому же, фосфор в почве содержится, в основном, в виде нерастворимых солей – фосфатов кальция, особенно в карбонатных почвах. Так как при большом содержании в почве карбонатов и соединений железа и алюминия в виде ионов последние образуют с фосфатными ионами РО 4 3- слаборастворимые соли – фосфаты типа Са(РО 4) 2 . По этой причине не следует смешивать растворы фосфорных удобрений с растворами железного или медного купороса, а также со щелочными растворами, т.е. с бордоской жидкостью.

Таким образом, в результате выноса с урожаем азота, фосфора и калия, они в почве практически не восполняются, что со временем приводит к истощению почвы.

Магний. Большая роль в жизни растений отводится магнию. Магний является основой молекулы хлорофилла. Так как атом магния находится в самом центре молекулы хлорофилла, и связан в окружении с четырьмя атомами азота, то из этого видно, что недостаток магния ослабляет процесс образования хлорофилла в листьях, что проявляется в появлении хлороза листьев.

При недостатке азота лист также теряет интенсивность зелёной окраски, что ослабляет процесс образования хлорофилла. Зелёный пигмент растений хлорофилл является ключевым веществом жизни растений. В сложную молекулу хлорофилла входят азот, водород, углерод, кислород и магний. Благодаря хлорофиллу зелёные растения поглощают энергию солнца и используют её для расщепления молекулы воды на водород и кислород, тем самым превращают энергию солнца в химическую энергию, необходимую для синтеза органических веществ. И так, процесс роста и плодоношения винограда представляет собой неразрывную цепь химизма веществ с участием воды и энергии солнечного света.

Два уровня органических химических лабораторий. Изначально из удобрений, расщепляемых микроорганизмами и кислотами почвы до ионов, образуются усвояемые растениями питательные вещества, которые, растворяясь в воде, всасываются корнями (восходящий поток) и подаются к листьям – органической химической лаборатории.

Под действием фотосинтеза в листьях молекулы хлорофилла, возбуждаясь квантами солнечного света, высвобождают электроны, которые «запускают» сложную цепь окислительно-восстановительных реакций.

В результате фотосинтеза из атмосферного углерода, воды и питательных элементов в листьях образуются углеводы: глюкоза, сахароза, лактоза с дальнейшим синтезом на клеточном уровне в клетчатку, крахмал, аминокислоты, жиры, белки, ферменты и др. органические вещества. Этот процесс идёт с высвобождением молекулярного кислорода, который в ходе процесса дыхания растений, выделяется в атмосферу. Выделенный растениями кислород обогащает воздух, которым все мы дышим, поглощая кислород, и выделяем углекислый газ, так необходимый растениям.

Из листьев, с участием микроэлементов, синтезированные углеводы транспортируются нисходящим током в растительные клетки – химические лаборатории высшего уровня. В глубине клеток, под действием ферментов, из молекул углеводов с участием азота, фосфора, серы и других элементов строятся сложные молекулы органических кислот, а из них – основополагающие молекулы высшего уровня жизни растений.

Благодаря фотосинтезу, создаются условия для деления клеток, вызывающие развитие, рост и плодоношение винограда.

Если в листьях хлорофилл является источником и двигателем фотосинтеза, то на клеточном уровне эти функции выполняют ферменты – биологические катализаторы. Они организовуют и ускоряют тысячи реакций, проходящих в живых клетках: обмен веществ, деление клеток, дыхание. Все химические процессы в растении направляются ферментами. Ферменты являются возбудителями и ускорителями всех химических превращений.

И так, с чего мы начали? Почему запаздывает созревание урожая, ягоды мелкие, кислые и плохо окрашиваются? Из выше изложенного мы видим, насколько сложны и взаимосвязаны процессы, протекающие в растениях. Недостаток какого-либо элемента или фактора приводит к затормаживанию или сбою всей системы, что приводит к снижению темпов развития, отставанию в росте, снижению урожайности, а также к ослаблению и заболеванию кустов. Из изложенного видно, почему так важно для виноградных кустов обеспечение солнечным освещением, водой, питательными элементами в почве и воздушной вентиляцией листового полога, которая обеспечивает приток с воздухом углекислого газа к листьям. Вот почему кусты в затенении плохо ассимилируют, а недостаток воды и питательных элементов угнетают растения.

Вывод. Исходя из изложенного, можно сделать вывод – для создания оптимальных условий развития виноградных кустов и преследуя цель стабильного получения высоких и экологически чистых урожаев, виноградарю необходимо:


Микроэлементы и макроэлементы и их роль в жизни растений

К макроэлементам относят те, которые содержатся в растениях в значительных (от сотых долей до целых процентов) количествах - это углерод, кислород, водород, азот, фосфор, калий, кальций, сера, магний и железо. К микроэлементам относят те, которые содержатся в растениях в очень незначительных (от стотысячных до тысячных долей процента) количествах, но которые, несмотря на столь малое количество, оказывают сильное воздействие на жизненные процессы растений - это бор, медь, цинк, молибден, марганец, кобальт и др.
Для начала нужно посмотреть на картинку справа.
Иногда видишь что растение болеет, а чем помочь не ясно.
Вот именно поэтому я и собрала картинки наглядно показывающие как выглядят растения если им чего-то не хватает.
Ну и умные слова найдете под катом о том как выглядят растения, потому что иной раз и картинки недостаточно:)

1. Недостаток азота
при азотном голодании рост различных культур замедляется. Если на Вашем участке случилась такая ситуация, на это Вам могут указать следующие растения: огурцы, картофель, черная смородина, белокочанная и цветная капуста, кукуруза, слива, яблоня. Плоды осыпаются, мельчают, мякоть становится плотная.

Первым признаком недостатка азота будет замедленный рост всех надземных частей растения. А затем поменяется и окраска листьев. Сначала они меняют окраску на бледно-зеленую, после чего непременно пожелтеют. Некоторые растения приобретают красноватый или оранжевый оттенок листьев. Изменение окраски листьев начинается с нижних ярусов. Постепенно заболевание переходит на верхние листья, а нижние высыхают и отмирают.
Кроме этих симптомов при азотном голодании происходят следующие процессы:

Стебли растений становятся одревесневшими

Листья располагаются под острым углом к стеблю

Количество цветков уменьшается и они опадают

Плоды имеют небольшой размер и несоответствующую окраску

Весь срок вегетации происходит быстрее положенного.

2. Недостаток калия
При скудном питании калием в растении происходит его перераспределение: из старых органов он переходит в более молодые, способствуя их развитию. Признаки недостатка обычно заметны бывают в середине вегетации, в период сильного роста растений. При недостатке калия окраска листьев голубовато-зеленая, тусклая, часто с бронзовым оттенком. Наблюдается пожелтение, а в дальнейшем побурение и отмирание кончиков и краев листьев (краевой "ожог" листьев). Развивается бурая пятнистость особенно ближе к краям. Края листьев закручиваются, наблюдается морщинистость.

Жилки кажутся погруженными в ткань листа. Стебель тонкий, рыхлый, полегающий. Недостаток калия вызывает обычно задержку роста, а также развития бутонов или зачаточных соцветий. Листья вянут и поникают, по краям светло-зеленые пятна, затем коричневые.

При избытке калия листья приобретают более темный оттенок, а новые листья мельчают. Избыток калия приводит к затрудненному усвоению таких элементов как кальций, магний, цинк, бор и др.

3. Недостаток магния
Магний входит в состав хлорофилла, что определяет его важное значение в жизни растений: он участвует в углеводном обмене, действии ферментов и в образовании плодов. При недостатке магния наблюдается характерная форма хлороза - у краев листа и между жилками зеленая окраска изменяется на желтую, красную, фиолетовую. Между жилками в дальнейшем появляются пятна различного цвета вследствие отмирания тканей. При этом крупные жилки и прилегающие к ним участки листа остаются зелеными. Кончики листьев и края загибаются, в результате чего листья куполообразно выгибаются, края листьев морщинятся и постепенно отмирают. Признаки недостатка появляются и распространяются от нижних листьев к верхним. У плодовых растений наблюдается ранний листопад, начинающийся с нижних побегов даже летом, и сильное опадение плодов.
У садовой клубники или земляники недостаток магния также можно определить по изменению окраски листьев. Ткань листа между жилками может пожелтеть, покраснеть или стать пурпурной, фиолетовой, при этом прожилки листьев еще долго продолжают оставаться зелеными. При очень сильном магниевом голодании листья ягодников преждевременно засыхают.
При избытке магния, у растения начинают отмирать корни, растение перестает усваивать кальций, и наступают такие симптомы, которые характерны при недостатке кальция.

4. Недостаток меди
Недостаток или избыток меди чаще ощутим на торфя­ных, реже на кислых песчаных почвах. В жаркое время года медное голодание усиливается.
Медь играет специфическую роль в жизни растений: регулирует фотосинтез и концентрацию образующихся в растении ингибиторов роста, водный обмен и перераспределение углеводов, входит в состав ферментов, повышает устойчивость к полеганию. Недостаток меди вызывает у растений задержку роста и цветения, хлороз листьев, потерю упругости клеток (тургора) и увядание растений. Известкование почв увеличивает поглощение меди почвенными частицами и снижает ее доступность для растений. Избыток меди также чрезвычайно вреден для растения. Проявляется он в том, что растение тормозится в развитии, на листьях появляются бурые пятна и они отмирают. Начинается процесс с нижних более старых листьев.
Листья выглядят вялыми, закручиваются внутрь в трубочку, белеют на кончиках. Молодые листья мельчают, приобретают сине-зеленый оттенок. Побеги становятся слабыми, цветы сбрасываются.

5. Недостаток молибдена
При слабом недостатке появляется желтая или бледно-коричневая окраска, или некротические пятна. При сильном недостатке хлорозная ткань отмирает. У крестоцветных окраска зеленая или зелено-синяя, листовая пластинка искривляется и редуцируется. Точка роста и сердечко отмирают. Цветение и образование семян замедляются. Уменьшаются величина, количество и изменяется цвет клубеньковых бактерий.
Молибден необходим растениям в еще меньших количествах, чем бор, марганец, цинк и медь. Он преимущественно накапливается в молодых растущих органах, входит в состав ферментов, регулирующих азотный обмен в растениях, участвует в синтезе нуклеиновых кислот (РНК и ДНК) и витаминов и регулирует фотосинтез и дыхание. При недостатке молибдена в растениях нарушаются многие процессы жизнедеятельности, в тканях растений накапливаются нитраты, что особенно опасно при избыточном применении азотных удобрений (включая навоз): чем выше дозы применяемых азотных удобрений, тем больше потребность растений в молибдене. Внешние признаки дефицита молибдена для растений сходны с азотным голоданием: тормозится рост растений, листья приобретают бледно-зеленую окраску, деформируются и преждевременно отмирают. Листья светлеют, желтеют, края закручиваются вверх. Появляются желтые крапинки между жилками листа, сами жилки не затрагиваются

Вновь развивающиеся листья вначале зеленые, но по мере роста становятся крапчатыми. Участки хлоротичной ткани впоследствии вздуваются, края листьев закручиваются внутрь; вдоль краев и на верхушках листьев развивается некроз. Большие дозы молибдена весьма токсичны для растений, поэтому содержание даже 1 мг молибдена в 1 кг сухой массы продукции вредно для человека и животных.

6. Недостаток серы
Сера входит в состав белков, витаминов, необходима для нормального роста и развития растения. При недостатке серы образуются мелкие, со светлой желтоватой окраской листья на вытянутых стеблях, ухудшаются рост и развитие растений. У плодовых культур листья и черешки становятся деревянистыми. В отличие от азотного голодания при серном голодании желтеют верхние листья растения и не опадают, хотя имеют бледную окраску. Недостаток серы проявляется в замедлении роста стеблей в толщину. При избытке серы листья постепенно желтеют с краев и скукоживаются, подворачиваясь внутрь. Затем буреют и отмирают. Иногда листья принимают не желтый, а сиреневато-бурый оттенок.

7. Недостаток цинка
Цинк необходим всем растениям, особенно плодовым. Как и другие микроэлементы, цинк играет важную роль в белковом, углеводном и фосфорном обмене, в биосинтезе витаминов и ростовых веществ (ауксинов). При дефиците цинка в растениях задерживается образование сахарозы, крахмала и ауксинов, нарушается образование белков, вследствие чего в них накапливаются небелковые соединения азота и нарушается фотосинтез. Это ведет к подавлению процесса деления клеток и влечет за собой морфологические изменения листьев (деформацию и уменьшение листовой пластинки) и стеблей (задержку роста междоузлий), т.е. к торможению роста растений. Симптомы недостатка цинка развиваются на всем растении или локализованы на более старых нижних листьях.
Вначале на листьях нижних и средних ярусов, а потом и на всех листьях растения, появляются разбросанные пятна серобурого и бронзового цвета. Ткань таких участков как бы проваливается и затем отмирает. Молодые листья ненормально мелки и покрыты желтыми крапинками или же равномерно хлоротичны, принимают слегка вертикальное положение, края листьев могут закручиваться кверху. У плодовых деревьев на концах ветвей образуются укороченные побеги с мелкими листьями, расположенными в виде розетки (так называемая "розеточность"), а при сильном дефиците появляется "суховершинность".

8. Еще поясняющие фотки добавлю.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: