Современные композиционные материалы в строительстве. Композиционные материалы для строительства: стеклофиброцемент

Рассмотрены ряд областей применения ПКМ в строительной индустрии в России и за рубежом, преимущества и недостатки ПКМ в сравнении с традиционными материалами. Приведены тенденции развития технологий изготовления и применения таких изделий, как композитная арматура и композитные мостовые настилы. Выделены основные сдерживающие факторы развития рынка ПКМ строительного назначения в России.


В настоящее время на мировом рынке наблюдается увеличение объемов применения ПКМ в строительной индустрии. Так, в 2010 году объем рынка полимерных композиционных материалов (ПКМ) в сегменте «строительство» составил ~3,1 млн. долларов (~17% от общего объема). По прогнозам экспертов объем данного сегмента увеличится к 2015 году до 4,4 млн. долларов. Применение ПКМ в строительстве позволяет уменьшить массу строительных конструкций, повысить коррозионную стойкость и стойкость к воздействию неблагоприятных климатических факторов, продлить межремонтные сроки, выполнять ремонт и усиление конструкций с минимальными затратами ресурсов и времени. Однако необходимо отметить, что развитие отечественного рынка ПКМ строительного назначения, как и всего рынка ПКМ в целом, значительно уступает мировому. В последние годы принимается ряд мер, направленных на развитие технологий и производства ПКМ, среди которых формирование в 2010 году технологической платформы «Полимерные композиционные материалы и технологии». Одним из инициаторов создания технологической платформы является ВИАМ, принимающий активное участие в работе по развитию композитной отрасли и формированию рынка композиционных материалов и соответствующих технологий в Российской Федерации не только в сегменте авиационной промышленности, но и в других сегментах, в том числе в строительном .

Как отмечалось выше, «строительный» сегмент занимает существенную часть рынка ПКМ. Основными областями применения ПКМ являются: арматура и гибкие связи; шпунтовые сваи и ограждения; сэндвич-панели, оконные и дверные профили; элементы мостовых конструкций (пешеходные мосты, переходы, несущие элементы, элементы ограждения, настилы, вантовые тросы); системы внешнего армирования.

Принимая во внимание острую необходимость в масштабном строительстве новых и реконструкции имеющихся объектов транспортной инфраструктуры, основное внимание в данной статье будет уделено таким областям применения ПКМ, как композитная арматура и элементы мостовых конструкций.

За рубежом широкое внедрение композитной арматуры в качестве армирующего материала строительных бетонных конструкций началось с 80-х годов прошлого столетия, в первую очередь при строительстве мостов и дорог. В Советском Союзе научно-исследовательские и опытно-конструкторские работы по разработке и применению композитной арматуры начались в 50-е годы прошлого столетия. В 1963 г. в г. Полоцке был сдан в эксплуатацию цех по опытно-промышленному производству стеклопластиковой арматуры, а в 1976 году в НИИЖБ и ИСиА были разработаны «Рекомендации по расчету конструкций со стеклопластиковой арматурой» . Таким образом, научно-технический задел по изготовлению композитной арматуры был создан еще в Советском Союзе. Композитная арматура на основе непрерывного волокнистого наполнителя и полимерной матрицы имеет ряд значительных преимуществ по сравнению со стальной арматурой (в том числе и с антикоррозионным покрытием), среди которых малая плотность (в 4 раза легче стальной), высокая коррозионная стойкость, малая теплопроводность, диэлектрические свойства, более высокая прочность. Малая плотность и высокая коррозионная и химическая стойкость особенно важны при строительстве объектов транспортной инфраструктуры (дороги, мосты, эстакады), прибрежных и портовых сооружений.

В последние годы в России обозначился резкий рост интереса к выпуску композитной арматуры, предназначенной для армирования бетонных строительных конструкций. В качестве армирующего наполнителя в арматуре может использоваться стекловолокно, непрерывное базальтовое волокно, а также углеродное волокно. Наиболее распространенный способ изготовления композитной стекло- или базальтопластиковой арматуры - безфильерная пултрузия (нидлтрузия, плейнтрузия). Среди отечественных производителей стекло- и базальтопластиковой арматуры - ООО «Бийский завод стеклопластиков», ООО «Гален», ООО «Московский завод композитных материалов» и многие другие. Углепластиковая арматура производится ХК «Композит». В табл. 1 и 2 приведены характеристики отечественной и зарубежной композитной арматуры.

Таблица 1

Характеристики российской композитной арматуры

Характеристика

из стеклопластика

из углепластика

ТУ 2296-001-20994511-2006

(ООО «Бийский завод стеклопластиков»)

ТУ 5714-007-13101102-2009 (ООО «Гален»)

ТУ 5769-001-09102892-2012

(ООО «Московский завод композитных материалов»)

ТУ 1916-001-60513556-2010

(ХК «Композит»)

Предел прочности при растяжении, МПа

Таблица 2

Характеристики зарубежной композитной арматуры

Характеристика

Значения характеристики для композитной арматуры

из стеклопластика

из углепластика

Glass V-rod HM (Pultrall)

Aslan 100 (Hughes

Aslan 200
(Hughes

Предел прочности при
растяжении, МПа

Модуль упругости при растяжении, ГПа

Относительное удлинение при разрыве, %

Видно, что российские образцы композитной арматуры не уступают по характеристикам зарубежным аналогам. Однако композитная арматура не находит пока достаточно широкого применения в практике строительства в РФ. Одной из причин этого, по мнению авторов, является недостаточная нормативно-техническая база, регулирующая выпуск и применение композитной арматуры. Хотя производителями арматуры были выполнены значительные работы , способствующие скорейшему созданию ГОСТ на композитную арматуру , требуется разработка ряда стандартов и рекомендаций для проектировщиков и строителей. Для сравнения, в США институт бетона (ACI) в 2012 году выпустил третью редакцию руководства по проектированию, впервые выпущенного в 1999 г., в то время как отечественные рекомендации по расчету конструкций со стеклопластиковой арматурой разработаны в 1976 г. . Кроме того, более активному применению композитной арматуры препятствует небольшой опыт работы с ней как строителей, так и конструкторов и архитекторов.

В настоящее время можно выделить две основные тенденции развития технологии изготовления композитной арматуры за рубежом: использование двухслойной арматуры с сердечником из композита, армированного непрерывными волокнами, и внешней оболочки, армированной рубленным волокнистым наполнителем, и разработку технологий изготовления арматуры с использованием термопластичной полимерной матрицы. В качестве примера рассмотрим разработки компаний Composite rebar technologies Inc. и Plasticomp LLC . Первая разработка университета штата Орегон представляет собой полую композитную арматуру и способ ее изготовления. Композитная арматура включает в себя полый сердечник, состоящий из армированной непрерывными волокнами термореактивной смолы, и внешнего слоя - оболочки, состоящей из смолы, армированной рублеными волокнами. Внешняя оболочка прикрепляется химически и физически к сердечнику на одном из этапов непрерывного технологического процесса. Внешний и внутренний диаметр арматуры, их соотношение, а также состав внешней оболочки можно варьировать в достаточно широких пределах, что дает значительные возможности для адаптации продукта к нуждам широкого круга потребителей. Среди преимуществ такой композитной арматуры стоит отметить возможность использования полости внутри сердечника для прокладки электрических или оптико-волоконных кабелей и размещения датчиков состояния конструкции, также они могут использоваться для подачи теплоносителя и создания таким образом не замерзающего мостового пролета. Наличие полого сердечника позволит соединять секции арматуры друг с другом, что также позволит расширить способы ее применения. Внешний слой, армированный рубленым волокном, предохраняет сердечник от механических повреждений во время транспортировки и применения, а также препятствует проникновению влаги к сердечнику арматуры.

Вторая разработка компании Plasticomp LLC представляет собой технологию изготовления композитной арматуры с использованием термопластичной матрицы. Технологический процесс начинается с изготовления премикса проталкиванием непрерывного волокнистого наполнителя в поток расплава термопластичного связующего, находящегося под высоким давлением и движущегося с большой скоростью. Роторный нож, расположенный по пути следования потока, режет смесь «волокнистый наполнитель-матрица» на короткие отрезки. Далее шнековый смеситель перемешивает рубленое волокно и термопластичную матрицу в расплавленный компаунд, пригодный для дальнейшего экструдирования. Полученный компаунд подается в Т-образную головку экструдера, где он наносится на непрерывный армирующий наполнитель, предварительно пропитанный термопластичным полимером (например, по классической пултрузионной технологии). Таким образом, получается композитная арматура на основе термопластичной полимерной матрицы, состоящая из сердечника, армированного непрерывным волокнистым наполнителем и внешней оболочки также из термопластичной матрицы армированной рубленым волокном. Преимуществами такой системы является большая устойчивость термопластичной матрицы к ударам и образованию микротрещин, возможность нагрева и придания необходимой формы прутку арматуры, возможность использования вторичного полимерного сырья и вторичной переработки самой композитной арматуры. Кроме того, использование вторичного сырья для термопластичной матрицы, а также потенциально возможное ускорение процесса изготовления продукции (не требуется время для отверждения смолы, как в случае реактопласта) может сделать данный процесс более экономически выгодным, чем традиционно используемые технологи изготовления композитной арматуры.

Основными направлениями развития отечественного производства композитной арматуры являются применение в качестве армирующего наполнителя непрерывного базальтового волокна и модификация составов связующих и технологического оборудования с целью улучшения свойств и повышения производительности производства .

Благодаря низкой плотности и высокой устойчивости к негативным воздействиям окружающей среды, ПКМ способны обеспечить значительные преимущества над материалами, традиционно применяемыми в строительстве объектов инфраструктуры, в том числе в строительстве мостов. Мосты, путепроводы, эстакады - сложные инженерно-технические сооружения, к которым предъявляются высокие требования по надежности и долговечности. В Северной Америке и Европе ведутся активные работы по применению ПКМ в мостостроении. Мосты с применением элементов из ПКМ возводятся более 15 лет, и объем строительства таких мостов увеличивается. Меняется и класс мостов - от первых экспериментальных пешеходных мостов к автомобильным мостам длиной до 20 м . В зарубежных странах основными областями применения ПКМ при строительстве мостов являются композитная арматура, мостовые настилы и пешеходные мосты. Ведутся работы по разработке и созданию вантовых тросов из ПКМ , а также быстровозводимых мостов с применением элементов несущих конструкций из ПКМ . По мнению автора работы , наиболее перспективными областями применения ПКМ являются пешеходные мосты и мостовые настилы. Стоит отметить, что в РФ активно ведутся работы по разработке технологий изготовления и проектирования пешеходных композитных мостов, построен и успешно эксплуатируется ряд объектов , в то время как вопросам разработки, проектирования и применения мостовых настилов из композиционных или гибридных материалов с использованием ПКМ для автомобильных и железнодорожных мостов уделяется меньше внимания.

Мостовые настилы, применяемые за рубежом, делятся по способу установки: укладываемые на опоры моста или на продольные балки; а также по структуре: многоячеистые (типа сотовых конструкций) или сэндвич-панели (композитные плиты с вспененным заполнителем между ними). При изготовлении настилов применяют пултрузию и намотку (изготовление плит и трубчатых/коробчатых структур между плитами), а для изготовления сэндвич-панелей применяют RTM-технологию. В качестве непрерывного волокнистого армирующего наполнителя используется стекловолокно, а в качестве полимерной матрицы - полиэфирные, эпоксидные и винилэфирные смолы. Для соединения элементов конструкции настила применяют склеивание и/или механическое крепление . Основными способами крепления настила из ПКМ как к опорным элементам, так и между собой являются механический способ (как правило, при помощи болтового соединения) и склеивание. Традиционно применяемый механический способ крепления является надежным и отработанным способом, однако необходимость проделывать отверстия для крепежа в элементах настила ухудшает прочностные характеристики и повышает чувствительность конструкции к факторам окружающей среды. Способ клеевого крепления является более прогрессивным, поскольку обеспечивает прочное и быстрое соединение без нарушения структуры материала (нет необходимости делать отверстия под крепеж), однако существует и ряд недостатков таких, например, как сложность соблюдения требований по подготовке поверхностей и условий окружающей среды при склеивании во время работы на объекте, отсутствие на данный момент методов надежного неразрушающего контроля качества склеивания на объекте - клеевое соединение плохо работает на «расслаивание».

Для повышения надежности и прочностных характеристик настилов, а также снижения их стоимости ведутся работы по созданию гибридных настилов с применением бетонных или железобетонных элементов . Кроме того, возможно применение различных технологических приемов. Так, описанный в работе способ внешней обмотки настила, состоящего из выполненных намоткой коробчатых профилей и полученных пултрузией композитных листов, усиливающим наполнителем позволяет повысить несущую способность настила и его жесткость.

Помимо таких преимуществ настилов из ПКМ, как малая плотность, что позволяет уменьшить нагрузку на опоры и снизить их материалоемкость, легкость установки (требуется техника с меньшей грузоподъемностью, более простая технология установки) и высокая коррозионная устойчивость, позволяющая уменьшить эксплуатационные расходы, существует ряд недостатков и проблем. Среди недостатков - высокая стоимость композитных настилов (в США стоимость настила из ПКМ в 2 раза выше стоимости аналогичного железобетонного настила); сложности с разработкой эффективных конструкций крепления «панель-панель» и «панель-продольная балка»; отсутствие полноценных стандартов и руководств по проектированию; недостаточное количество данных по прочностным характеристикам при комбинированном воздействии механических нагрузок и факторов окружающей среды. В связи с этим актуальными являются работы, посвященные системам крепления, разработке рекомендаций по проектированию и эксплуатации композитных настилов, методам прогнозирования прочности, характера разрушения и усталостной долговечности настилов из ПКМ. Значительного внимания также заслуживают работы по применению «умных» композитов, интегрированию датчиков напряженно-деформированного состояния конструкции в ее композитные элементы и применению современных систем диагностики состояния конструкции .

В заключении необходимо отметить, что существует отставание от США, ряда Европейских стран и Китая по целому ряду позиций:

В области разработки нормативно-технической документации на выпуск и применение композитной арматуры и мостовых настилов из ПКМ;

В области технологий изготовления изделий из ПКМ строительного назначения.

Накоплен существенно меньший опыт по применению ПКМ в строительных конструкциях и эксплуатации подобных конструкций. Практически отсутствуют отечественные производители оборудования. Однако повышение интереса к применению ПКМ в строительстве, ряд мер правительства по стимулированию рынка композиционных материалов, а также усилия производителей композитов по совершенствованию нормативно-технической базы создают благоприятные условия для активизации работ по разработке и применению конкурентоспособных изделий из ПКМ отечественного производства в строительной индустрии.


ЛИТЕРАТУРА

1. Каблов Е.Н. Стратегические направления развития материалов и технологий их переработки на период до 2030 года //Авиационные материалы и технологии. 2012. №S. С. 7–17.
2. Гращенков Д.В., Чурсова Л.В. Стратегия развития композиционных и функциональных материалов //Авиационные материалы и технологии. 2012. №S. С. 231–242.
3. Рекомендации по расчету конструкций со стеклопластиковой арматурой (Р-16-78) /НИИЖБ и ИСиА. М. 1976. 21 с.
4. Луговой А.Н., Савин В.Ф. О стандартизации подходов к оценке характеристик стержней из волокнистых полимерных композиционных материалов //Стройпрофиль. 2011. №4. C. 30–32.
5. ГОСТ 31938–2012 Арматура композитная полимерная для армирования бетонных конструкций. Общие технические условия.
6. Malnati P. A hidden revolution: FRP rebar gains strength //Composites Technology 2011. №12. Р. 25–29.
7. Hollow composite-material rebar structure, associated components, and fabrication apparatus and methodology WO 2012/039872; опубл. 29.05.2012.
8. Device and method for improved reinforcing element with continuous center core member with long fiber reinforced thermoplastic wrapping WO 2009/032980; опубл. 12.05.2009.
9. Чурсова Л.В., Ким А.М., Панина Н.Н., Швецов Е.П. Наномодифицированное эпоксидное связующее для строительной индустрии //Авиационные материалы и технологии. 2013. №1. С. 40–47.
10. Keller T. Material-tailored use of FRP composites in bridge and building construction /In: CIAS international seminar. 2007. P. 319–333.
11. Zhou A., Lesko J. State of the Arte in FRP bridge decks /In: FRP composites: materials, Design, and Construction. Bristol. 2006. (Электронный ресурс).
12. Peng Feng, Lieping Ye Behaviors of new generation of FRP bridge deck with outside filament-wound reinforcement /In: Third International Conference on FRP Composites in Civil Engineering (CICE 2006). Miami. 2006. P. 139–142.
13. Wu Z.S., Wang X. Investigation on a thousand-meter scale cable-stayed bridge with fibre composite cables /In: Fourth International Conference on FRP Composites in Civil Engineering (CICE 2008). Zurich. 2008. P. 1–6.
14. Chin-Sheng Kao, Chang-Huan Kou, Xu Xie Static Instability Analysis of Long-Span Cable-Stayed Bridges with Carbon Fiber Composite Cable under Wind Load //Tamkang Journal of Science and Engineering. 2006. V. 9. №2. P. 89–95.
15. Bannon D.J., Dagher H.J., Lopez-Anido R.A. Behavior of Inflatable Rigidified Composite Arch Bridges /In: Сomposites & Polycon-2009. American Composites Manufacturers Association. Tampa. 2009. Р. 1–6.
16. Rapidly-deployable light weight load resisting arch system: pat. 20060174549A1 US; опубл. 10.08.2006.
17. Ушаков А.Е., Кленин Ю.Г., Сорина Т.Г., Хайретдинов А.Х., Сафонов А.А. Мостовые конструкции из композитов //Композиты и наноструктуры. 2009. №3. C. 25–37.
18. Kayler K. The largest composite bridge ever constructed in the world //JEC Composites Magazine. 2012. №77. P. 29–32.
19. Drissi-Habti M. Smart Composites for Durable Infrastructures – Importance of Structural Helth monitoring /In: 5th international conference on FRP Composites. Beising. 2010. Р. 264–267.
20. Каблов Е.Н., Сиваков Д.В., Гуляев И.Н., Сорокин К.В., Дианов Е.М., Васильев С.А., Медведков О.И. Применение оптического волокна в качестве датчиков деформации в полимерных композиционных материалах //Все материалы. Энциклопедический справочник. 2010. №3. С. 10–15.
21. Сиваков Д.В., Гуляев И.Н., Сорокин К.В., Федотов М.Ю., Гончаров В.А. Особенности создания полимерных композиционных материалов с интегрированной активной электромеханической актюаторной системой на основе пьезоэлектриков //Авиационные материалы и технологии. 2011. №1. С. 31–34.

Вы можете оставить комментарий к статье. Для этого необходимо зарегистрироваться на сайте.

Поисковые теги:

Композитные материалы давно нашли широкое применение в строительной индустрии всего мира. Однако наши строители, за исключением дорожников, эти материалы недолюбливают. Почему?


Проблеме увеличения долговечности строительных конструкций зданий и сооружений, автомобильных дорог посвящено множество научных работ и жарких дискуссий. С главным выводом согласны практически все: эту задачу возможно решить только при помощи комплексного подхода. Как здесь могут помочь композитные материалы?

Заменим сталь на композиты

Существенно увеличить срок службы железобетонных конструкций поможет замена металлической арматуры на композитную. Для армирования несущих и ограждающих конструкций сегодня разработаны и применяются композитные арматуры с применением полимеров из углеродного волокна, стекло- и базальтопластика.

Отметим, что композитный (или композиционный) материал является конструкционным и может быть как металлическим, так и неметаллическим. В его состав входят усиливающие элементы в виде волокон и нитей из более прочного материала.

Например, пластик армируют углеродными, борными и стеклянными волокнами, а алюминий - нитями из бериллия или стали. Варьируя наполнение, можно получить композиционные материалы с заданными параметрами по прочности, коррозионной или абразивной стойкости. Кроме того, такие материалы могут приобретать необходимые диэлектрические, магнитные и другие свойства.

Характеристики композитной арматуры из стекла и углепластика

Характеристики Из стеклопластика Из углепластика
ТУ 2296-001-20994511–2006 ТУ 5714-007-13101102–2009 ТУ 5769-001-09102892–2012 ТУ 1916-001-60513556–2010
Предел прочности при растяжении 1100 МПа 1000 МПа 1200 МПа 1600 МПа
Модуль упругости при растяжении 50 ГПа 45 ГПа 55 ГПа 130 ГПа

Источник: ВНИИ авиационных материалов

В мире

Но вернемся к практическому применению композитов в строительстве. Сами полимерные композиты, изделия и конструкции из них давно нашли в мировой строительной индустрии достаточно широкое применение.

Более 30% от всего мирового объема выпускаемых полимерных композиционных материалов используется именно в стройиндустрии, а это около 4 млн т. Наибольшее применение они находят при строительстве транспортной инфраструктуры, в жилищно-коммунальном хозяйстве, при возведении промышленных и жилых зданий.

В России

А вот в нашей стране, несмотря на призывы властей и соответствующую программу (еще в 2013 году премьер-министр Дмитрий Медведев утвердил комплекс мероприятий по совершенствованию механизмов производства композиционных материалов и изделий из них, подготовленную упраздненным ныне Минрегионом РФ), применение композитов до сих пор находится на недопустимо низком уровне.

По разным оценкам, потребление полимерных композитов в отечественной строительной отрасли составляет от 0,5 до 2% от общемирового объема, а это лишь капля в море: всего 6-7 тыс. т. В число «приятных исключений» входит недавно открытый ГК «Мортон» в подмосковном Наро-Фоминске ДСК «Град», где в производстве панелей используется арматура из композитных материалов.

В чем же причина такого незавидного положения дел в масштабах страны? В незнании или непонимании преимуществ композитных материалов? В боязни всего нового? Или же в бюрократических проволочках?

Не хотят или не могут?

Как говорят эксперты, специалисты строительной отрасли зачастую просто не обладают информацией о возможностях композиционных материалов. Многие из них до сих пор не знакомы с соответствующими документами, которые регламентируют требования к применению в строительстве полимерных композитов. А отчасти строители просто игнорируют существующие нормативы, которые подтверждают возможность применения полимерных композиционных материалов.

Система, созданная в Минстрое и ЖКХ РФ для внедрения инноваций, не только не работает, но и не позволяет их внедрять, - констатирует исполнительный директор Союза производителей композитов Сергей Ветохин . - Это связано в первую очередь с отсутствием необходимой правовой базы. Для того чтобы система заработала, необходимо внести изменения в действующие нормативные правовые документы.

Впрочем, лед, похоже, наконец тронулся. В Минпромторге РФ подготовлены методические рекомендации по разработке региональных программ внедрения и практического применения композитов в строительстве. Такие программы сегодня уже разрабатываются отдельных регионах, в частности в Ленинградской, Смоленской и Волгоградской областях, в Санкт-Петербурге, Хабаровском крае и в других субъектах РФ.

Ударим композитом по российским дорогам

Особенно активно внедрением современных материалов занимаются в Росавтодоре. Около года назад здесь была принята «Программа Федерального дорожного агентства по внедрению композиционных материалов (композитов), конструкций и изделий на 2015-2020 гг.».

Многие необходимые элементы для ремонта и строительства дорог с применением композитов уже выпускают предприятия отрасли. Это различная арматура, армирующие сетки, элементы дорожной инфраструктуры: лотки, заграждения, шумопоглощающие экраны, столбы освещения и т.д.

В конце 2015 года на заседании Научно-технического совета Росавтодора в г. Санкт-Петербурге будут подведены итоги реализации комплексной программы по внедрению композитных материалов в регионах.

Уже сегодня видно, что применение при проектировании и строительстве объектов транспортной инфраструктуры полимерных композитных материалов и конструкций (таких как армирование нежестких дорожных одежд с помощью композитных георешеток, внедрение систем водоотведения с дорожного полотна и мостовых сооружений, изготовление перильных ограждений на основе стеклопластика) способствует росту темпов их применения и предотвращению использования контрафактной продукции на федеральных дорогах страны, - подчеркивает начальник Управления научно-технических исследований и информационного обеспечения Федерального дорожного агентства Александр Бухтояров .

Так что сегодня использование конструкций из композитов стало одним из приоритетных направлений инновационного развития дорожного хозяйства.

Что ж, как говорится, всем бы так.

Слово за вами, строители и коммунальщики

А вот в строительстве и жилищно-коммунальном хозяйстве применение композитных изделий до сих пор находится в эмбриональном состоянии.

В основном в проекты реконструкции и модернизации жилищного строительства закладываются изделия из таких традиционных материалов, как железобетон, сталь и чугун. Хотя применение композитов для канализационных труб, коллекторов, труб горячего и холодного водоснабжения позволило бы существенно повысить эффективность эксплуатации строящихся и действующих объектов.

При этом применение композитных изделий и материалов на пилотных и экспериментальных строительных объектах подтверждает и доказывает необходимость и обоснованность их применения.

Так что же нужно сделать, чтобы современные и столь необходимые строительные материалы заняли свое достойное место? Кто ответит за то, что в этом отношении Россия плетется в хвосте мирового прогресса?

Ответ очевиден. За низкое внедрение композитов в строительстве и жилищно-коммунальной сфере отвечает профильное ведомство - Министерство строительства и ЖКХ РФ, которому давно уже пора взять пример с коллег из Федерального дорожного агентства.

Ну а мы, журналисты, можем лишь обратиться к профессиональному сообществу с пафосными словами в духе прежних первомайских призывов: «Строители и коммунальщики! Активнее берите пример с российских дорожников, идущих в авангарде внедрения композитных материалов! Ура!»

Владимир РЕЧМЕНСКИЙ

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

  • Введение
  • 1. Общие сведения о композиционных материалах
  • 2. Состав и строение композита
  • 3. Оценка матрицы и упрочнителя в формировании свойств композита
  • 3.1 Композиционные материалы с металлической матрицей
  • 3.2 Композиционные материалы с неметаллической матрицей
  • 4. Строительные материалы - композиты
  • 4.1 Полимеры в строительстве
  • 4.2 Композиты и бетон
  • 4.3 Алюминиевые композитные панели
  • Заключение
  • Список использованной литературы
  • ВВЕДЕНИЕ
  • В начале XXI века задаются вопросом о будущих строительных материалах. Бурное развитие науки и техники затрудняет прогнозирование: еще четыре десятилетия назад не было широкого применения полимерных строительных материалов, а о современных «истинных» композитах было известно только узкому кругу специалистов. Тем не менее, можно предположить, что основными строительными материалами также будут металл, бетон и железобетон, керамика, стекло, древесина, полимеры. Строительные материалы будут создаваться на той же сырьевой основе, но с применением новых рецептур компонентов и технологических приемов, что даст более высокое эксплуатационное качество и соответственно долговечность и надежность. Будет максимальное использование отходов различных производств, отработавших изделий, местного и домашнего мусора. Строительные материалы будут выбираться по экологическим критериям, а их производство будет основываться на безотходных технологиях.
  • Уже сейчас имеется обилие фирменных названий отделочных, изоляционных и других материалов, которые в принципе отличаются только составом и технологией. Этот поток новых материалов будет увеличиваться, а их эксплуатационные свойства совершенствоваться с учетом суровых климатических условий и экономии энергетических ресурсов России.
  • 1. ОБЩИЕ СВЕДЕНИЯ О КОМПОЗИЦИОННЫХ МАТЕРИАЛАХ
  • Композиционный материал - неоднородный сплошной материал, состоящий из двух или более компонентов, среди которых можно выделить армирующие элементы, обеспечивающие необходимые механические характеристики материала, и матрицу (или связующее), обеспечивающую совместную работу армирующих элементов.
  • Механическое поведение композита определяется соотношением свойств армирующих элементов и матрицы, а также прочностью связи между ними. Эффективность и работоспособность материала зависят от правильного выбора исходных компонентов и технологии их совмещения, призванной обеспечить прочную связь между компонентами при сохранении их первоначальных характеристик.
  • В результате совмещения армирующих элементов и матрицы образуется комплекс свойств композита, не только отражающий исходные характеристики его компонентов, но и включающий свойства, которыми изолированные компоненты не обладают. В частности, наличие границ раздела между армирующими элементами и матрицей существенно повышает трещиностойкость материала, и в композитах, в отличие от металлов, повышение статической прочности приводит не к снижению, а, как правило, к повышению характеристик вязкости разрушения.
  • Преимущества композиционных материалов:
  • высокая удельная прочность
  • высокая жёсткость (модуль упругости 130-140 ГПа)
  • высокая износостойкость
  • высокая усталостная прочность
  • из КМ возможно изготовить размеростабильные конструкции
  • Причём, разные классы композитов могут обладать одним или несколькими преимуществами. Некоторых преимуществ невозможно добиться одновременно.
  • Недостатки композиционных материалов
  • Большинство классов композитов (но не все) обладают недостатками:
  • высокая стоимость
  • анизотропия свойств
  • повышенная наукоёмкость производства, необходимость специального дорогостоящего оборудования и сырья, а следовательно развитого промышленного производства и научной базы страны
  • 2. СОСТАВ И СТРОЕНИЕ КОМПОЗИТА
  • Композиты - многокомпонентные материалы, состоящие из полимерной, металлической., углеродной, керамической или др. основы (матрицы), армированной наполнителями из волокон, нитевидных кристаллов, тонкодиспeрсных частиц и др. Путем подбора состава и свойств наполнителя и матрицы (связующего), их соотношения, ориентации наполнителя можно получить материалы с требуемым сочетанием эксплуатационных и технологических свойств. Использование в одном материале нескольких матриц (полиматричные композиционные материалы) или наполнителей различной природы (гибридные композиционные материалы) значительно расширяет возможности регулирования свойств композиционных материалов. Армирующие наполнители воспринимают основную долю нагрузки композиционных материалов.
  • По структуре наполнителя композиционные материалы подразделяют на волокнистые (армированы волокнами и нитевидными кристаллами), слоистые (армированы пленками, пластинками, слоистыми наполнителями), дисперсноармированные, или дисперсно-упрочненные (с наполнителем в виде тонкодисперсных частиц). Матрица в композиционных материалах обеспечивает монолитность материала, передачу и распределение напряжения в наполнителе, определяет тепло-, влаго-, огне - и хим. стойкость.
  • По природе матричного материала различают полимерные, металлические, углеродные, керамические и др. композиты.
  • Наибольшее применение в строительстве и технике получили композиционные материалы, армированные высокопрочными и высокомодульными непрерывными волокнами. К ним относят: полимерные композиционные материалы на основе термореактивных (эпоксидных, полиэфирных, феноло-формальд., полиамидных и др.) и термопластичных связующих, армированных стеклянными (стеклопластики), углеродными (углепластики), орг. (органопластики), борными (боропластики) и др. волокнами; металлич. композиционные материалы на основе сплавов Al, Mg, Cu, Ti, Ni, Сг, армированных борными, углеродными или карбидкремниевыми волокнами, а также стальной, молибденовой или вольфрамовой проволокой;
  • Композиционные материалы на основе углерода, армированного углеродными волокнами (углерод-углеродные материалы); композиционные материалы на основе керамики, армированной углеродными, карбидокремниевыми и др. жаростойкими волокнами и SiC. При использовании углеродных, стеклянных, арамидных и борных волокон, содержащихся в материале в кол-ве 50-70%, созданы композиции (см. табл) с уд. прочностью и модулем упругости в 2-5 раз большими, чем у обычных конструкционных материалов и сплавов. Кроме того, волокнистые композиционные материалы превосходят металлы и сплавы по усталостной прочности, термостойкости, виброустойчивости, шумопоглощению, ударной вязкости и др. свойствам. Так, армирование сплавов Аl волокнами бора значительно улучшает их механические характеристики и позволяет повысить т-ру эксплуатации сплава с 250-300 до 450-500 °С. Армирование проволокой (из W и Мо) и волокнами тугоплавких соединений используют при создании жаропрочных композиционных материалов на основе Ni, Cr, Co, Ti и их сплавов. Так, жаропрочные сплавы Ni, армированные волокнами, могут работать при 1300-1350 °С. При изготовлении металлических волокнистых композиционных материалов нанесение металлической матрицы на наполнитель осуществляют в основном из расплава материала матрицы, электрохимическим осаждением или напылением. Формование изделий проводят гл. обр. методом пропитки каркаса из армирующих волокон расплавом металла под давлением до 10 МПа или соединением фольги (матричного материала) с армирующими волокнами с применением прокатки, прессования, экструзии при нагр. до т-ры плавления материала матрицы.
  • Один из общих технологических методов изготовления полимерных и металлич. волокнистых и слоистых композиционные материалы - выращивание кристаллов наполнителя в матрице непосредственно в процессе изготовления деталей. Такой метод применяют, напр., при создании эвтектич. жаропрочных сплавов на основе Ni и Со. Легирование расплавов карбидными и интерметаллич. соед., образующими при охлаждении в контролируемых условиях волокнистые или пластинчатые кристаллы, приводит к упрочнению сплавов и позволяет повысить т-ру их эксплуатации на 60-80 oС. композиционные материалы на основе углерода сочетают низкую плотность с высокой теплопроводностью, хим. стойкостью, постоянством размеров при резких перепадах т-р, а также с возрастанием прочности и модуля упругости при нагреве до 2000 °С в инертной среде. О методах получения углерод-углеродных композиционные материалы см. Углепластики. Высокопрочные композиционные материалы на основе керамики получают при армировании волокнистыми наполнителями, а также металлич. и керамич. дисперсными частицами. Армирование непрерывными волокнами SiC позволяет получать композиционные материалы, характеризующиеся повыш. вязкостью, прочностью на изгиб и высокой стойкостью к окислению при высоких т-рах. Однако армирование керамики волокнами не всегда приводит к значит. повышению ее прочностных св-в из-за отсутствия эластичного состояния материала при высоком значении его модуля упругости. Армирование дисперсными металлич. частицами позволяет создать керамико-металлич. материалы (керметы), обладающие повыш. прочностью, теплопроводностью, стойкостью к тепловым ударам. При изготовлении керамич. композиционные материалы обычно применяют горячее прессование, прессование с послед. спеканием, шликерное литье (см. также Керамика). Армирование материалов дисперсными металлич. частицами приводит к резкому повышению прочности вследствие создания барьеров на пути движения дислокаций. Такое армирование гл. обр. применяют при создании жаропрочных хромоникелевых сплавов. Материалы получают введением тонкодисперсных частиц в расплавленный металл с послед. обычной переработкой слитков в изделия. Введение, напр., ТhO2 или ZrO2 в сплав позволяет получать дисперсноупрочненные жаропрочные сплавы, длительно работающие под нагрузкой при 1100-1200 °С (предел работоспособности обычных жаропрочных сплавов в тех же условиях - 1000-1050 °С). Перспективное направление создания высокопрочных композиционные материалы-армирование материалов нитевидными кристаллами ("усами"), к-рые вследствие малого диаметра практически лишены дефектов, имеющихся в более крупных кристаллах, и обладают высокой прочностью. наиб. практич. интерес представляют кристаллы Аl2О3, BeO, SiC, B4C, Si3N4, AlN и графита диаметром 1-30 мкм и длиной 0,3-15 мм. Используют такие наполнители в виде ориентированной пряжи или изотропных слоистых материалов наподобие бумаги, картона, войлока. композиционные материалы на основе эпоксидной матрицы и нитевидных кристаллов ThO2 (30% по массе) имеют?раст 0,6 ГПа, модуль упругости 70 ГПа. Введение в композицию нитевидных кристаллов может придавать ей необычные сочетания электрических и магнитных свойств. Выбор и назначение композиционные материалы во многом определяются условиями нагружения и т-рой эксплуатации детали или конструкции, технол. возможностями. наиболее доступны и освоены полимерные композиционные материалы Большая номенклатура матриц в виде термореактивных и термопластич. полимеров обеспечивает широкий выбор композиционные материалы для работы в диапазоне от отрицат. т-р до 100-200°С - для органопластиков, до 300-400 °С - для стекло-, угле - и боропластиков. Полимерные композиционные материалы с полиэфирной и эпоксидной матрицей работают до 120-200°, с феноло-формальдегидной - до 200-300 °С, полиимидной и кремнийорг. - до 250-400°С. Металлич. композиционные материалы на основе Аl, Mg и их сплавов, армированные волокнами из В, С, SiC, применяют до 400-500°С; композиционные материалы на основе сплавов Ni и Со работают при температуре до 1100-1200 °С, на основе тугоплавких металлов и соед. - до 1500-1700°С, на основе углерода и керамики - до 1700-2000 °С. Использование композитов в качестве конструкц., теплозащитных, антифрикц., радио - и электротехн. и др. материалов позволяет снизить массу конструкции, повысить ресурсы и мощности машин и агрегатов, создать принципиально новые узлы, детали и конструкции. Все виды композиционные материалы применяют в хим., текстильной, горнорудной, металлургической промышленности, машиностроении, на транспорте, для изготовления спортивного снаряжения и др.
  • композитный полимер алюминиевый строительство
  • 3. ОЦЕНКА МАТРИЦЫ И УПРОЧНИТЕЛЯ В ФОРМИРОВАНИИ СВОЙСТВ КОМПОЗИТА
  • 3.1 КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ С МЕТАЛЛИЧЕСКОЙ МАТРИЦЕЙ
  • Композиционные материалы состоят из металлической матрицы (чаще Al, Mg, Ni и их сплавы), упрочненной высокопрочными волокнами (волокнистые материалы) или тонкодисперсными тугоплавкими частицами, не растворяющимися в основном металле (дисперсно-упрочненные материалы). Металлическая матрица связывает волокна (дисперсные частицы) в единое целое. Волокно (дисперсные частицы) плюс связка (матрица), составляющие ту или иную композицию, получили название композиционные материалы.
  • 3.2 КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ С НЕМЕТАЛЛИЧЕСКОЙ МАТРИЦЕЙ
  • Композиционные материалы с неметаллической матрицей нашли широкое применение. В качестве неметаллических матриц используют полимерные, углеродные и керамические материалы. Из полимерных матриц наибольшее распространение получили эпоксидная, фенолоформальдегидная и полиамидная. Угольные матрицы коксованные или пироуглеродные получают из синтетических полимеров, подвергнутых пиролизу. Матрица связывает композицию, придавая ей форму. Упрочнителями служат волокна: стеклянные, углеродные, борные, органические, на основе нитевидных кристаллов (оксидов, карбидов, боридов, нитридов и других), а также металлические (проволоки), обладающие высокой прочностью и жесткостью. Свойства композиционных материалов зависят от состава компонентов, их сочетания, количественного соотношения и прочности связи между ними. Армирующие материалы могут быть в виде волокон, жгутов, нитей, лент, многослойных тканей. Содержание упрочнителя в ориентированных материалах составляет 60-80 об.%, в неориентированных (с дискретными волокнами и нитевидными кристаллами) 20-30 об.%. Чем выше прочность и модуль упругости волокон, тем выше прочность и жесткость композиционного материала. Свойства матрицы определяют прочность композиции при сдвигах и сжатии и сопротивление усталостному разрушению. По виду упрочнителя композиционные материалы классифицируют на стекловолокниты, карбоволокниты с углеродными волокнами, бороволокниты и органоволокниты. В слоистых материалах волокна, нити, ленты, пропитанные связующим, укладываются параллельно друг другу в плоскости укладки. Плоские слои собираются в пластины. Свойства получаются анизотропными. Для работы материала в изделии важно учитывать направление действующих нагрузок. Можно создать материалы как с изотропными, так и с анизотропными свойствами. Можно укладывать волокна под разными углами, варьируя свойства композиционных материалов. От порядка укладки слоев по толщине пакета зависят изгибные и крутильные жесткости материала. Применяется укладка упрочнителей из трех, четырех и более нитей. Наибольшее применение имеет структура из трех взаимно перпендикулярных нитей. Упрочнители могут располагаться в осевом, радиальном и окружном направлениях. Трехмерные материалы могут быть любой толщины в виде блоков, цилиндров. Объемные ткани увеличивают прочность на отрыв и сопротивление сдвигу по сравнению со слоистыми. Система из четырех нитей строится путем разложения упрочнителя по диагоналям куба. Структура из четырех нитей равновесна, имеет повышенную жесткость при сдвиге в главных плоскостях. Однако создание четырехнаправленных материалов сложнее, чем трехнаправленных.
  • 4 . СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ - КОМПОЗИТЫ
  • 4.1 ПОЛИМЕРЫ В СТРОИТЕЛЬСТВЕ
  • Говоря о применении новых материалов на основе пластиков в стройиндустрии, стоит заметить следующее. Если в гражданском строительстве в основном применяются «традиционные» материалы, то в таких секторах, как, строительства мостов, железных дорог, мостов и др., у полимерных композитов есть неплохие перспективы.
  • Строительство - это размытый термин, который включает в себя самые разные механические нагрузки, начиная с легких нагрузок, которым подвергаются щиты, корпуса, гнезда для защиты оборудования или звуконепроницаемых стен, и заканчивая сверхвысоким давлением, которое выдерживают опоры для мостов. Для поиска решений, применимых в этих несхожих ситуациях, в гражданском строительстве применяются очищенные пластмассы или композиты:
  • - Обычно применяемые в легких строительных конструкциях.
  • - Периодически используемые в специализированных (нишевых) конструкциях - Предназначенные исключительно для крупных строительных конструкций, например, мостов.
  • На рисунке 1 изображено несколько примеров.
  • Рисунок 1: Строительные конструкции в гражданском строительстве.
  • В гражданском строительстве используются традиционные материалы, например, бетон и сталь, для которых характерна низкая стоимость компонентов, но высокая стоимость обработки и установки, а также низкие возможности обработки. Результатом внедрения пластмасс может стать следующее:
  • - Сокращение итоговых расходов.
  • - Повышение производительности.
  • - Снижение веса.
  • - Увеличение возможностей при проектировании в сравнении с деревом и металлами.
  • - Устойчивость к коррозии.
  • - Простота обработки и установки.
  • - Определенные полимеры могут пропускать свет и даже быть прозрачными.
  • - Простота технического обслуживания.
  • - Изоляционные свойства.
  • С другой стороны, следует помнить о старении и механическом сопротивлении. Тем не менее, некоторые проекты, построенные в середине 1950х годов с использованием полиэстера, укрепленного стекловолокном, демонстрируют значительную долговечность.
  • Отрасль гражданского строительства относится к консервативным, и перед расширением использования пластмасс и композитов стоят такие барьеры, как:
  • - Слабая изученность и малый опыт работы с этими материалами в отрасли гражданского строительства.
  • - Сложность перенесения опыта, накопленного в других отраслях промышленности.
  • - Сложность выбора и оценки размеров этих материалов.
  • - Сложность взаимопонимания между представителями различных профессий, обладающими очень разными менталитетами.
  • - Мнение о пластмассах, сложившееся в обществе.
  • - Жесткие окружающие условия на месте строительства.
  • - Сложные условия применения, которые не совсем совпадают с практикой и квалификацией строителей.
  • Прогрессивный ответ пластмасс возрастающим требованиям строительства: от очищенных термопластов к ориентированным композитам с углеродными волокнами Композиты представляют особый интерес для строительной отрасли, так как им присущи высокие коэффициенты [производительность/вес/конечная стоимость].
  • Более того, возможность задания направления в композитном укреплении расширяет возможности при проектировании в сравнении со сталью.
  • В таблице 1 сравнивают несколько случаев, но также существуют и другие промежуточные решения.
  • Таблица 1: Примеры свойств от очищенных термопластов к однонаправленным композитам
  • Очищенные пластмассы и пластмассы, укрепленные коротким стекловолокном

    Характеристика

    Полиуретан, полученный усиленным реакционным инжекционным формованием

    Полиметилметакрилат для звуконепроницаемых стен

    Стекловолокно,%

    Плотность, г/см3

    Прочность на разрыв, МПа

    Растяжение при разрыве,%

    Модуль изгиба, ГПа

    Воздействие надреза по Изоду, кДж/м2

    Термореактивная пластмасса, усиленная стекловолокном, для BMC (стеклонаполненный премикс для прессования) и SMC (листовой формовочный материал)

    Характеристика

    Вес стекловолокна

    Плотность, г/см3

    Прочность на разрыв, МПа

    Растяжение при разрыве,%

    Модуль изгиба, ГПа

    Воздействие надреза по Изоду, Дж/м

    Эпоксидная смола, усиленная однонаправленным углеродным волокном

    Вес углеродного волокна,%

    Плотность, г/см3

    Прочность на разрыв, МПа

    Растяжение при разрыве,%

    Модуль изгиба, ГПа

    На рисунке 2 приведена схема роста механической эффективности в соответствии с армированием полимера.

    Рисунок 2: Механическая эффективность пластмасс.

    Затраты на материал для композитов всегда превосходят аналогичные затраты на металл, а самое дорогое это углеродно-волоконное армирование (см. Рисунок 3). Эти затраты на пластмассы и композиты компенсируются другими преимуществами.

    Рисунок 3: Сравнительная стоимость композитов и металла.

    В обмен на высокую стоимость материала композиты предлагают уникальный набор интересных свойств:

    Снижение веса - Сокращение расходов на сборку - Установка - Сокращение операционных расходов - Сокращение итоговых расходов - Сопротивление коррозии - Безопасность.

    Снижение веса Плотность стали превышает плотность композитов по следующим коэффициентам:

    3.9 против эпоксидной смолы, армированной стекловолокном.

    5.1 против эпоксидной смолы, армированной углеродным волокном.

    5.8 против эпоксидной смолы, армированной кевларовым волокном.

    Возможности снижения веса, если использовать композиты вместо стали, менее значительны. В большинстве предлагаемых в настоящее время решений их можно оценить приблизительно в 15-30%.

    4.2 КОМПОЗИТЫ И БЕТОН

    Преимущества композиционных материалов хорошо проявляются при армировании бетона и строительстве.

    Недорогой и разносторонний, бетон является одним из лучших строительных материалов во многих предложениях. Являясь настоящим композитом, типичный бетон состоит из гравия и песка, связанных вместе в матрице из цемента, с металлической арматурой, обычно добавляемой для усиления прочности. Бетон превосходно ведет себя при сжатии, но становится хрупким и непрочным при растяжении. Растягивающие напряжения, так же как и пластическая усадка во время отверждения, приводят с трещинам, которые поглощают воду, что, в конечном счете, приводит к коррозии металлической арматуры и существенной потере монолитности бетона при разрушении металла.

    Композитная арматура утвердилась на строительном рынке благодаря доказанному сопротивлению коррозии. Новые и обновленные конструкторские руководства, и тестовые протоколы облегчают инженерам выбор армированных пластиков.

    Усиленные волокнами пластики (стеклопластик, базальтопластик) с давних пор рассматривались как материалы, позволяющие улучшить характеристики бетона.

    Композитная арматура: признанная технология.

    За последние 15 лет композитная арматура перешла от экспериментального прототипа к эффективному заменителю стали во многих проектах, особенно в связи с повышением цен на сталь. «Стеклопластиковая арматура часто используется, и это очень конкурентный рынок».

    Для некоторых конструкторских проектов, таких как оборудование для магниторезонансной томографии в больницах, или приближение к будкам-пунктам взимания дорожной оплаты, которые используют технологию радиочастотной идентификации для определения уже оплативших покупателей, композитная арматура является единственным выбором. Стальная арматура не может быть использована, потому как интерферирует с электромагнитными сигналами. В добавление к электромагнитной прозрачности, композитная арматура также необычайно стойкая к коррозии, легкая по весу - около одной четверти от веса аналогичной стальной, и является теплоизолятором, потому как препятствует протеканию тепла в строительных конструкциях.

    Композитные сетки в сборных бетонных панелях: высокий потенциал углеродно-эпоксидные сетки C-GRID заменяют традиционную сталь или арматуру в сборных структурах в качестве вторичного армирования.

    C-GRID является крупной сеткой из жгутов на основе углерода/эпоксидной смолы. Используется как замена вторичной стальной армирующей сетки в бетонных панелях и архитектурных приложениях. Размер сетки меняется как в зависимости от бетона и типа заполнителя, так и от требований к прочности панели

    Армированный волокнами бетон: появление прочности.

    Использование коротких волокон в бетоне для улучшения его свойств было признанной технологией на протяжении десятилетий, и даже веков, если принять во внимание, что в Римской Империи строительные растворы были армированы конским волосом. Армирование волокнами усиливает прочность и упругость бетона (способность к пластической деформации без разрушения) посредством удерживания части нагрузки при повреждении матрицы и препятствуя росту трещин.

    «Добавление волокон позволяет материалу деформироваться пластично и выдерживать растягивающие нагрузки».

    Усиленный волокнами бетон был использован для изготовления этих предварительно напряженных мостовых балок. Использование арматуры не потребовалось из-за высокой эластичности и прочности материала, которая была придана ему стальными армирующими волокнами, добавленными в бетонную смесь.

    4.3 АЛЮМИНИЕВЫЕ КОМПОЗИТНЫЕ ПАНЕЛИ

    Алюминиевый композитный материал - это панель, состоящая из двух алюминиевых листов и пластикового либо минерального наполнителя между ними. Композитная структура материала придаёт ему лёгкость и высокую прочность в сочетании с упругостью и стойкостью к излому. Химическая и лакокрасочная обработка поверхности обеспечивает материалу превосходную устойчивость к коррозии и температурным колебаниям. Благодаря сочетанию этих уникальных свойств, алюминиевый композитный материал является одним из наиболее востребованных в строительстве.

    Алюминиевый композит обладает рядом существенных преимуществ, обеспечивающих ему растущую с каждым годом популятность как отделочного материала.

    Минимальный вес в сочетании с высокой жёсткостью. Панели АКМ отличаются низким весом, обусловленным применением алюминиевых покрывающих листов и облегченного центрального слоя в сочетании с высокой жесткостью, задаваемой комбинацией вышеуказанных материалов. В условиях применения на фасадных конструкциях данное обстоятельство выгодно отличает АКМ от альтернативных материалов, таких как листовые алюминий и сталь, керамический гранит, фиброцементные плиты. Применение алюминиевого композитного материала значительно снижает общий вес конструкции вентилируемого фасада.

    Плоскостность материала. Алюминиевый композитный материал способен противостоять скручиванию. Причина - в нанесении верхнего слоя методом прокатки. Плоскостность обеспечивается применением прокатки вместо обычной прессовки, которая дает высокую равномерность нанесения слоя. Максимальная пологость составляет 2мм на 1220 мм длины, что составляет 0,16% от последней.

    Устойчивость лакокрасочного покрытия к воздействию окружающей среды. Благодаря чрезвычайно устойчивому многослойному покрытию материал в течение длительного времени не теряет интенсивность окраски под воздействием солнечного цвета и агрессивных компонентов атмосферы.

    Широкий выбор цветов и фактур. Материал выпускается с покрытием, выполненным лакокрасками: солидные цвета и цвета «металлик» в любом диапазоне цветов и оттенков, покрытиями под камень и дерево. Помимо этого, выпускаются панели с напылением «хром», «золото», панели с фактурной поверхностью, панели с полированным покрытием из нержавеющей стали, титана, меди.

    Общая износостойкость. Панели АКМ имеют сложную структуру, образованную алюминиевыми листами и наполнителем центрального слоя. Сопряжение данных материалов обеспечивает панелям жесткость в сочетании с эластичностью, что делает АКМ устойчивым к нагрузкам и деформациям, создающимся окружающей средой. Материал не утрачивает своих свойств в течение чрезвычайно длительного времени.

    Коррозионная стойкость. Устойчивость материала к коррозии определяется применением в структуре панели листов алюминиевого сплава, защищенного многослойным лакокрасочным покрытием. В случае повреждения покрытия поверхность листа защищается образованием оксидной пленки

    Звукоизоляционные свойства. Композиционная структура панели АКМ обеспечивает хорошую звукоизоляцию, поглощая звуковые волны и вибрации.

    Обрабатываемость материала. Панели легко поддаются таким видам механической обработки как гибка, резка, фрезеровка, сверление, вальцовка, сварка, склеивание, без ущерба покрытию и нарушению структуре материала. При нагрузках, возникающих в процессе сгибания панелей, в том числе в радиус не отмечается расслаивание панелей либо нарушения поверхностных слоев, такие как растрескивание алюминиевых листов и лакокрасочного покрытия. При производстве на заводе панели защищаются от механических повреждений специальной пленкой, удаляемой после завершения монтажных работ.

    Придание формы. Панели легко принимают практически любую заданную форму, например радиусную. Пригодность материала к спаиванию позволяет добиваться сложной геометрии изделий, что невозможно ни с одним другим облицовочным материалом, кроме алюминия, перед которым AКМ значительно выигрывает по весу.

    Эстетичность конструкции. Применение алюминиевого композитного материала позволяет создавать панели облицовки различных размеров и форм, делает данный материал незаменимым при решении сложных архитектурных задач.

    Длительный срок службы. АКМ в течение длительного времени устойчивы к воздействию внешней среды, таким как солнечный свет, атмосферные осадки, ветровые нагрузки, колебания температуры, благодаря применению устойчивого покрытия и достигнутому в материале сочетанию жесткости и эластичности. Расчетный срок службы панелей на открытом воздухе составляет около 50 лет.

    Минимальный уход в процессе эксплуатации. Наличие высококачественного покрытия способствует самоочищению панелей от внешних загрязнений. Так же панели легко моются не агрессивными очистителями.

    ЗАКЛЮЧЕНИЕ

    Два перспективных пути открывают комбинированные материалы, усиленные либо волокнами, либо диспергированными твердыми частицами.

    У первых в неорганическую металлическую или органическую полимерную матрицу введены тончайшие высокопрочные волокна из стекла, углерода, бора, бериллия, стали или нитевидные монокристаллы. В результате такого комбинирования максимальная прочность сочетается с высоким модулем упругости и небольшой плотностью. Именно такими материалами будущего являются композиционные материалы.

    Композиционный материал конструкционный (металлический или неметаллический) материал, в котором имеются усиливающие его элементы в виде нитей, волокон или хлопьев более прочного материала. Примеры композиционных материалов: пластик, армированный борными, углеродными, стеклянными волокнами, жгутами или тканями на их основе; алюминий, армированный нитями стали, бериллия.

    Комбинируя объемное содержание компонентов, можно получать композиционные материалы с требуемыми значениями прочности, жаропрочности, модуля упругости, абразивной стойкости, а также создавать композиции с необходимыми магнитными, диэлектрическими, радиопоглощающими и другими специальными свойствами.

    СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

    Горчаков Г.И., Баженов Ю.М. Строительные материалы. - М.: Стройиздат, 1986.

    Микульский В.Г., Горчаков Г.И., Козлов В.В., Куприянов В.Н., Орентлихер Л.П., Рахимов Р.З., Сахаров Г.П., Хрулев В.М. Строительные материалы / Под ред.В.Г. Микульского. - М.: АСВ, 1996, 2000.

    Рыбьев И.А., Арефьева Т.Н., Баскаков Н.С., Казенова Е.П., Коровников БД., Рыбьева Т.Г. Общий курс строительных материалов / Под ред. И.А. Рыбьева. М.: Высшая школа, 1987.

    Хигерович М.И., Горчаков Г.И., Рыбьев И.А., Домокеев А.Г., Ерофеева Е.А., Орентлихер Л.П., Попов Л.Н., Попов К.Н. Строительные материалы / Под ред.Г.И. Горчакова. - М: Высшая школа, 1982.

    Эвальд В.В. Строительные материалы, их изготовление, свойства и испытания. - С. -Пб. -Л. -М: 1896-1933, 14-ое изд.

    Композиционные материалы волокнистого строения.К., 1970.

    Конкин А.А., Углеродные и другие жаростойкие волокнистые материалы, М., 1974.

    Композиционные материалы, пер. с англ., т.1-8, М., 1978.

    Наполнители для полимерных композиционных материалов, пер. с англ., М., 1981.

    Сайфулин Р.С., Неорганические композиционные материалы, М., 1983.

    Справочник по композиционным материалам, под ред.Д. Любина, пер. с англ., кн. I 2, М., 1988.

    Основные направления развития композиционных термопластичных материалов, М. . 1988.

    Размещено на Allbest.ru

    ...

Подобные документы

    Сведения о композиционных материалах, имеющих две составляющие: армирующие элементы и матрица. Их преимущества. Механическое поведение композита, эффективность и работоспособность материала. Состав и строение композита. Свойства композиционных материалов.

    реферат , добавлен 08.02.2009

    Классификация композиционных материалов: на полимерной, металлической и неорганической (керамической) матрице. Состав, строение и свойства композита и прогнозирование его свойств. Основные критерии сочетания компонентов и их экономическая эффективность.

    реферат , добавлен 20.11.2010

    Общие сведения о строительных материалах. Влияние различных факторов на свойства бетонных смесей. Состав, технология изготовления и применение в строительстве кровельных керамических материалов, дренажных и канализационных труб, заполнителей для бетона.

    контрольная работа , добавлен 05.07.2010

    Общие сведения о строительных материалах. Строение и химический состав бетона, его физические и механические свойства. Наиболее известные виды кирпича, его визуальные и геометрические характеристики. Влажность древесины и свойства, связанные с ней.

    презентация , добавлен 19.02.2014

    История строительных алюминиевых сплавов, их физико-механические свойства, сортаменты, средства соединения. Основные принципы проектирования алюминиевых конструкций в строительстве. Особенности сварочных, заклепочных, болтовых и клеевых соединений.

    курсовая работа , добавлен 13.12.2011

    Эффективное применение кирпичной кладки в строительстве. "Проветривание" комбинированных стен. Теплоэффективные ограждающие конструкции жилых и гражданских зданий. Физические основы нормирования теплотехнических свойств керамического кирпича и камня.

    курсовая работа , добавлен 04.02.2012

    Классификация строительных материалов. Требования к составляющим бетона, факторы, влияющие на его прочность и удобоукладываемость. Ячеистые и пористые бетоны, их применение в строительстве. Лакокрасочные материалы и металлы, их применение в строительстве.

    контрольная работа , добавлен 05.05.2014

    Конструктивное решение 9-ти этажного панельного жилого дома. Основные материалы, используемые в промышленном строительстве. Панели для внешних стен. Конструктивные элементы жилых домов. Способы кладки кирпича. Номенклатура завода железобетонных изделий.

    отчет по практике , добавлен 22.06.2015

    Применение древесины в строительстве, оценка ее положительных и отрицательных свойств. Средства соединения элементов деревянных конструкций. Расчет конструкций рабочей площадки, щита и прогонов кровли, клееной балки, центрально-сжатой стойки (колонны).

    курсовая работа , добавлен 12.03.2015

    Общие сведения об облицовочных материалах. Функциональные особенности панелей на основе ДСП, ДВП, MDF, а также материалов, используемых для отделки стен. Декоративная штукатурка, пластиковые панели. Нетрадиционные материалы при отделке помещений.

Стеклофиброцемент относится к неорганическим композиционным строительным материалам.

Композиционные материалы на неорганической основе давно и успешно применяются в строительстве и отделке.

Для производства неорганического композита активно используется стекло.

Такой тип материалов имеет ряд преимуществ в сравнении с органическими композитами:

  • длительный срок эксплуатации;
  • пожаробезопасность и негорючесть;
  • экологическая чистота и безопасность.

Такие свойства всегда важны для сферы строительных материалов. Кроме того, важной характеристикой композиционных материалов является низкая материалоемкость при высокой прочности продукции.

Нагрузку на фундамент, балки, опорные колонны зданий можно снизить за счет уменьшения массы сооружения и ограждающих конструкций.

Из композита возможно возведение тонкостенных конструкций.

Композитный материал незаменим при производстве облицовочных панелей с эффективным утеплительным слоем

Стеклофиброцемент имеет сложный состав, в структуре этого композитного материала соединяются волокна стекла и цементная матрица.

К полезным техническим характеристикам стеклофиброцемента относят:

  • высокие показатели прочности при растяжении и изгибе;
  • стойкость к появлению трещин;
  • низкая водопроницаемость;
  • низкие показатели усадочных деформаций;
  • высокая огнестойкость.

Стеклофиброцемент не требует специального оборудования для механической обработки, хорошо поддается резке и сверлению.

Равномерное распределение стеклянных волокон по всей площади сечения материала является основным условием получения качественного стеклофиброцемента.

При производстве цементы армируют двумя основными способами, которые различаются по расположению волокон – направленный и хаотичный.

При направленном армировании применяется ориентированная стекловолокнистая арматура.

Хаотичное армирование обычно осуществляется по средством пневмонабрызга отрезков ровинга и раствора цемента.

Средние значения для характеристик стеклофиброцемента, произведенного на

портландцементе с использованием цементостойкого ровинга ГИС отражены в таблице.

Технология армирования стеклом позволяет обойтись без жесткой арматуры, а значит стеклофиброцемент подходит для производства изделий и элементов сложных форм. С помощью этого материала возможно решение нестандартных архитектурных и инженерных задач, при этом производство изделий облегчается.

Высокая пожаробезопасность и огнестойкость отличает стеклофиброцемент от композитных строительных материалов на основе полимеров.

Кроме того материал устойчив к коррозии, не подвержен воздействию биологически активных веществ, и другим негативным влияниям окружающей среды.

Материал не содержит вредных для здоровья веществ, экологически чист.

Еще одним важным свойством стеклофиброцемента является его немагнитность, поскольку он армируется неметаллическими материалами. Такое качество эффективно снижает издержки по расходу металла и трудозатрат в строительстве.

Стеклофибробетон в отделке метрополитена в Казахстане,

Стеклофиброцемент позволяет создавать строительные и архитектурные конструкции разных сечений, конструкции со сложной конфигурацией, при этом качество возводимых зданий повышается.

Прочность стеклофиброцементных плит и элементов зависит от многих факторов, среди которых:

  • Процент армирования;
  • Длинна армирующих волокон;
  • Направление армирования;
  • Применяемая технология производства и проч.

Примечательным свойством стеклофиброцемента является потеря прочности. Этот процесс происходит довольно быстро в течении первых двух-трёх лет эксплуатации, после скорость потери прочности значительно снижается, после чего прочность материала достигает своих стабильных значений.

Несмотря на этот, казалось бы, негативный фактор, запас прочности стеклофиброцемента после производства настолько велик, что даже после падения первоначальных значений, его прочностные показатели позволяют успешно применять его при

Думаем, что многие из пользователей согласятся с тем доводом, что брус по праву считается одним из самых популярных видов пиломатериала используемых при возведении домов. Сложно представить весь список областей строительства, где он применяется. О том, как правильно подойти к строительству брусового дома можно узнать из нашего форума. Но сегодня, на смену классике деревянного домостроения приходит новый материал – композитный брус.

Впервые прочитав название, или взяв этот материал в руки, многие из застройщиков могут задуматься:

«Похож на дерево, только легче и прочнее. Из чего же его изготавливают?»

Этот материал появился в продаже сравнительно недавно, и по своей сути не является настоящим деревом, хотя и обладает всеми преимуществами обычно бруса. Но как говорится:

«Всё новое – это хорошо забытое старое».

Стоит лишь посмотреть на хорошо известную нам фанеру, или вспомнить, как в древности возводили дома из блоков, смешивая друг с другом солому и глину, чтобы понять суть композитного материала.


Композит – это искусственно созданный сплошной материал, состоящий из двух или более компонентов, различных по физическим и химическим свойствам.

И если применение в современной технике композиционных материалов, ни у кого не вызывает удивление, то брус – созданный из композита, может вызвать удивление или недоверие застройщика.


Что же это такое – композитный брус?

Основу композитного бруса составляют маленькие частицы натуральной древесины, специальные добавки и красители, придающие насыщенный цвет композитному брусу.

Связующим звеном вышеперечисленных веществ выступает бишофит. Кстати, следует запомнить интересный факт о бишофите.

Кроме того, что этот минерал используется в производстве плитки и искусственного камня, он нашел применение в медицине для лечения суставов и верхних дыхательных путей, а значит, дома построенные из композитного бруса, будут экологически чистыми и даже целебными.


Как изготавливается композитный брус?


Изготовление композитного бруса отличается простотой и технологичностью процесса.

Заранее подготовленное и тщательно перемешанное сырьё прессуется, после чего полученный материал нарезается на брус строго заданных размеров.

Специальные добавки придают композитному брусу водостойкость и огнеупорность. Несмотря на свою повышенную твердость, композитный брус сохранил все положительные стороны работы с натуральным деревом.

Он прекрасно пилится, режется и легко соединяется при помощи металлического крепежа.

Преимущества композитного бруса

Благодаря конструкции бруса «гребень–паз» возведение дома напоминает не строительство, а сборку здания по принципу детского конструктора. На одну из сторон бруса предварительно наносится цементный состав, и брус соединяется друг с другом. После чего остаётся только замазать швы. Обычно их замазывают смесью из бишофита и магнезита. В результате чего возведённое здание обретает дополнительную прочность и герметичность.

Обладая всеми преимуществами натурального дерева, композитный брус избавлен от такого его недостатка как усадка и разбухание.

Если взять в руки композитный брус, а затем обычный строганный, то можно заметить разницу в весе. Именно в этом заложено ещё одно достоинство композитного бруса. Дома построенные из него получаются более лёгкими, а значит, отпадает необходимость возводить мощный фундамент, что приводит к экономии ваших средств. Тонкостями заливки ленточного фундамента делится наш форумчанин в форума.


Подведение итогов


В заключении, стоит упомянуть такие важные характеристики композитного бруса как высокая огнестойкость. По этому показателю он входит в одну группу с кирпичом.

А по коэффициенту теплопроводности, превосходит обычный брус, что позволяет ему эффективно сохранять тепло и защищать помещение от холода.

Также следует отметить, что дом, построенный из композитного бруса не подвержен гниению, в нём не заведутся грызуны, а сами стены не обязательно штукатурить.

Горячее обсуждение борьбы с грызунами ведётся

Казалось бы вот он – идеальный строительный материал. Но как говорится, у любой медали есть оборотная сторона. Производство подобного материала требует применения дорогостоящего оборудования и малораспространённых материалов, что сказывается на цене композитного бруса, которая превышает стоимость строганного бруса и вплотную приближается к цене бруса клееного.

Есть ещё одна проблема, которую следует учесть тем, кто заинтересуется этим материалом - из-за малого срока эксплуатации домов возведённых с применением подобной технологии, затруднительно спрогнозировать, как поведёт себя строение в ближайшем будущем.


Ознакомившись с читатели смогут избежать ошибок при строительстве брусового дома. А посмотрев это видео , вы узнаете, как отделать фасад деревянного дома.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: