Написать уравнение касательной плоскости и нормали. Касательная плоскость к поверхности второго порядка

Пусть имеем поверхность, заданную уравнением вида

Введем следующее определение.

Определение 1. Прямая линия называется касательной к поверхности в некоторой точке , если она является

касательной к какой-либо кривой, лежащей на поверхности и проходящей через точку .

Так как через точку Р проходит бесконечное число различных кривых, лежащих на поверхности, то и касательных к поверхности, проходящих через эту точку, будет, вообще говоря, бесконечное множество.

Введем понятие об особых и обыкновенных точках поверхности

Если в точке все три производные равны нулю или хотя бы одна из этих производных не существует, то точка М называется особой точкой поверхности. Если в точке все три производные существуют и непрерывны, причем хотя бы одна из них отлична от нуля, то точка М называется обыкновенной точкой поверхности.

Теперь мы можем сформулировать следующую теорему.

Теорема. Все касательные прямые к данной поверхности (1) в ее обыкновенной точке Р лежат в одной плоскости.

Доказательство. Рассмотрим на поверхности некоторую линию L (рис. 206), проходящую через данную точку Р поверхности. Пусть рассматриваемая кривая задана параметрическими уравнениями

Касательная к кривой будет касательной к поверхности. Уравнения этой касательной имеют вид

Если выражения (2) подставить в уравнение (1), то это уравнение превратится в тождество относительно t, так как кривая (2) лежит на поверхности (1). Дифференцируя его по получим

Проекции этого вектора зависят от - координат точки Р; заметим, что так как точка Р обыкновенная, то эти проекции в точке Р одновременно не обращаются в нуль и потому

касательный к кривой, проходящей через точку Р и лежащей на поверхности. Проекции этого вектора вычисляются на основании уравнений (2) при значении параметра t, соответствующем точке Р.

Вычислим скалярное произведение векторов N и которое равно сумме произведений одноименных проекций:

На основании равенства (3) выражение, стоящее в правой части, равно нулю, следовательно,

Из последнего равенства следует, что вектор ЛГ и касательный вектор к кривой (2) в точке Р перпендикулярны. Проведенное рассуждение справедливо для любой кривой (2), проходящей через точку Р и лежащей на поверхности. Следовательно, каждая касательная к поверхности в точке Р перпендикулярна к одному и тому же вектору N и потому все эти касательные лежат в одной плоскости, перпендикулярной к вектору ЛГ. Теорема доказана.

Определение 2. Плоскость, в которой расположены все касательные прямые к линиям на поверхности, проходящим через данную ее точку Р, называется касательной плоскостью к поверхности в точке Р (рис. 207).

Заметим, что в особых точках поверхности может не существовать касательной плоскости. В таких точках касательные прямые к поверхности могут не лежать в одной плоскости. Так, например, вершина конической поверхности является особой точкой.

Касательные к конической поверхности в этой точке не лежат в одной плоскости (они сами образуют коническую поверхность).

Напишем уравнение касательной плоскости к поверхности (1) в обыкновенной точке. Так как эта плоскость перпендикулярна вектору (4), то, следовательно, ее уравнение имеет вид

Если уравнение поверхности задано в форме или уравнение касательной плоскости в этом случае примет вид

Замечание. Если в формуле (6) положим , то эта формула примет вид

ее правая часть представляет собой полный дифференциал функции . Следовательно, . Таким образом, полный дифференциал функции двух переменных в точке соответствующий приращениям независимых переменных х и у, равен соответствующему приращению аппликаты касательной плоскости к поверхности, которая является графиком данной функции.

О пределение 3. Прямая, проведенная через точку поверхности (1) перпендикулярно к касательной плоскости, называется нормалью к поверхности (рис. 207).

Напишем уравнения нормали. Так как ее направление совпадает с направлением вектора N, то ее уравнения будут иметь вид

Уравнение нормальной плоскости

1.

4.

Касательная плоскость и нормаль к поверхности

Пусть дана некоторая поверхность, A — фиксированная точка поверхности и B — переменная точка поверхности,

(рис. 1).

Ненулевой вектор

n
называется нормальным вектором к поверхности в точке A , если


lim
B → A
j =
π
2
.

Точка поверхности F (x , y , z) = 0 называется обыкновенной , если в этой точке

  1. частные производные F " x , F " y , F " z непрерывны;
  2. (F " x )2 + (F " y )2 + (F " z )2 ≠ 0 .

При нарушении хотя бы одного из этих условий точка поверхности называется особой точкой поверхности .

Теорема 1. Если M (x 0 , y 0 , z 0 ) — обыкновенная точка поверхности F (x , y , z) = 0 , то вектор

n
= grad F (x 0 , y 0 , z 0 ) = F " x (x 0 , y 0 , z 0 )
i
+ F " y (x 0 , y 0 , z 0 )
j
+ F " z (x 0 , y 0 , z 0 )
k
(1)

является нормальным к этой поверхности в точке M (x 0 , y 0 , z 0 ) .

Доказательство приведено в книге И.М. Петрушко, Л.А. Кузнецова, В.И. Прохоренко, В.Ф. Сафонова ``Курс высшей математики: Интегральное исчисление. Функции нескольких переменных. Дифференциальные уравнения. М.: Изд-во МЭИ, 2002 (стр. 128).

Нормалью к поверхности в некоторой ее точке называется прямая, направляющий вектор которой является нормальным к поверхности в этой точке и которая проходит через эту точку.

Канонические уравнения нормали можно представить в виде

x − x 0
F " x (x 0 , y 0 , z 0 )
=
y − y 0
F " y (x 0 , y 0 , z 0 )
=
z − z 0
F " z (x 0 , y 0 , z 0 )
.
(2)

Касательной плоскостью к поверхности в некоторой точке называется плоскость, которая проходит через эту точку перпендикулярно нормали к поверхности в этой точке.

Из этого определения следует, что уравнение касательной плоскости имеет вид:

(3)

Если точка поверхности является особой, то в этой точке нормальный к поверхности вектор может не существовать, и, следовательно, поверхность может не иметь нормали и касательной плоскости.

Геометрический смысл полного дифференциала функции двух переменных

Пусть функция z = f (x , y) дифференцируема в точке a (x 0 , y 0 ) . Ее графиком является поверхность

f (x , y) − z = 0.

Положим z 0 = f (x 0 , y 0 ) . Тогда точка A (x 0 , y 0 , z 0 ) принадлежит поверхности.

Частные производные функции F (x , y , z) = f (x , y) − z суть

F " x = f " x , F " y = f " y , F " z = − 1

и в точке A (x 0 , y 0 , z 0 )

  1. они непрерывны;
  2. F "2 x + F "2 y + F "2 z = f "2 x + f "2 y + 1 ≠ 0 .

Следовательно, A — обыкновенная точка поверхности F (x , y , z) и в этой точке существует касательная плоскость к поверхности. Согласно (3), уравнение касательной плоскости имеет вид:

f " x (x 0 , y 0 ) (x − x 0 ) + f " y (x 0 , y 0 ) (y − y 0 ) − (z − z 0 ) = 0.

Вертикальное смещение точки на касательной плоскости при переходе из точки a (x 0 , y 0 ) в произвольную точку p (x , y) есть B Q (рис. 2). Соответствующее приращение аппликаты есть

(z − z 0 ) = f " x (x 0 , y 0 ) (x − x 0 ) + f " y (x 0 , y 0 ) (y − y 0 )

Здесь в правой части стоит дифференциалd z функции z = f (x , y) в точке a (x 0 , x 0 ). Следовательно,
d f (x 0 , y 0 ). есть приращение аппликаты точки плоскости касательной к графику функции f (x , y) в точке (x 0 , y 0 , z 0 = f (x 0 , y 0 )).

Из определения дифференциала следует, что расстояние между точкой P на графике функции и точкой Q на касательной плоскости есть бесконечно малая более высокого порядка, чем расстояние от точки p до точки a .

В некоторой точке и имеет в ней непрерывные частные производные, по крайней мере одна из которых не обращается в нуль, то в окрестности этой точки поверхность, заданная уравнением (1), будет правильной поверхностью .

Помимо указанного выше неявного способа задания поверхность может быть определена явно , если одну из переменных, например z, можно выразить через остальные:

Также существует параметрический способ задания. В этом случае поверхность определяется системой уравнений:

Понятие о простой поверхности

Более точно, простой поверхностью называется образ гомеоморфного отображения (то есть взаимно однозначного и взаимно непрерывного отображения) внутренности единичного квадрата. Этому определению можно дать аналитическое выражение.

Пусть на плоскости с прямоугольной системой координат u и v задан квадрат , координаты внутренних точек которого удовлетворяют неравенствам 0 < u < 1, 0 < v < 1. Гомеоморфный образ квадрата в пространстве с прямоугольной системой координат х, у, z задаётся при помощи формул х = x(u, v), у = y(u, v), z = z(u, v) (параметрическое задание поверхности). При этом от функций x(u, v), y(u, v) и z(u, v) требуется, чтобы они были непрерывными и чтобы для различных точек (u, v) и (u", v") были различными соответствующие точки (x, у, z) и (x", у", z").

Примером простой поверхности является полусфера. Вся же сфера не является простой поверхностью . Это вызывает необходимость дальнейшего обобщения понятия поверхности.

Подмножество пространства, у каждой точки которого есть окрестность, являющаяся простой поверхностью , называется правильной поверхностью .

Поверхность в дифференциальной геометрии

Геликоид

Катеноид

Метрика не определяет однозначно форму поверхности. Например, метрика геликоида и катеноида , параметризованных соответствующим образом, совпадает, то есть между их областями существует соответствие, сохраняющее все длины (изометрия). Свойства, сохраняющиеся при изометрических преобразованиях, называются внутренней геометрией поверхности. Внутренняя геометрия не зависит от положения поверхности в пространстве и не меняется при её изгибании без растяжения и сжатия (например, при изгибании цилиндра в конус).

Метрические коэффициенты определяют не только длины всех кривых, но и вообще результаты всех измерений внутри поверхности (углы, площади, кривизна и др.). Поэтому всё, что зависит только от метрики, относится к внутренней геометрии.

Нормаль и нормальное сечение

Векторы нормали в точках поверхности

Одной из основных характеристик поверхности является её нормаль - единичный вектор, перпендикулярный касательной плоскости в заданной точке:

.

Знак нормали зависит от выбора координат.

Сечение поверхности плоскостью, содержащей нормаль (в данной точке), образует некоторую кривую на поверхности, которая называется нормальным сечением поверхности. Главная нормаль для нормального сечения совпадает с нормалью к поверхности (с точностью до знака).

Если же кривая на поверхности не является нормальным сечением, то её главная нормаль образует с нормалью поверхности некоторый угол θ . Тогда кривизна k кривой связана с кривизной k n нормального сечения (с той же касательной) формулой Мёнье :

Координаты орта нормали для разных способов задания поверхности приведены в таблице:

Координаты нормали в точке поверхности
неявное задание
явное задание
параметрическое задание

Кривизна

Для разных направлений в заданной точке поверхности получается разная кривизна нормального сечения, которая называется нормальной кривизной ; ей приписывается знак плюс, если главная нормаль кривой идёт в том же направлении, что и нормаль к поверхности, или минус, если направления нормалей противоположны.

Вообще говоря, в каждой точке поверхности существуют два перпендикулярных направления e 1 и e 2 , в которых нормальная кривизна принимает минимальное и максимальное значения; эти направления называются главными . Исключение составляет случай, когда нормальная кривизна по всем направлениям одинакова (например, у сферы или на торце эллипсоида вращения), тогда все направления в точке - главные.

Поверхности с отрицательной (слева), нулевой (в центре) и положительной (справа) кривизной.

Нормальные кривизны в главных направлениях называются главными кривизнами ; обозначим их κ 1 и κ 2 . Величина:

K = κ 1 κ 2

называется гауссовой кривизной , полной кривизной или просто кривизной поверхности. Встречается также термин скаляр кривизны , который подразумевает результат свёртки тензора кривизны ; при этом скаляр кривизны вдвое больше, чем гауссова кривизна.

Гауссова кривизна может быть вычислена через метрику, и поэтому она является объектом внутренней геометрии поверхностей (отметим, что главные кривизны к внутренней геометрии не относятся). По знаку кривизны можно классифицировать точки поверхности (см. рисунок). Кривизна плоскости равна нулю. Кривизна сферы радиуса R всюду равна . Существует и поверхность постоянной отрицательной кривизны - псевдосфера .

Геодезические линии, геодезическая кривизна

Кривая на поверхности называется геодезической линией , или просто геодезической , если во всех её точках главная нормаль к кривой совпадает с нормалью к поверхности. Пример: на плоскости геодезическими будут прямые и отрезки прямых, на сфере - большие круги и их отрезки.

Эквивалентное определение: у геодезической линии проекция её главной нормали на соприкасающуюся плоскость есть нулевой вектор. Если кривая не является геодезической, то указанная проекция ненулевая; её длина называется геодезической кривизной k g кривой на поверхности. Имеет место соотношение:

,

где k - кривизна данной кривой, k n - кривизна её нормального сечения с той же касательной.

Геодезические линии относятся к внутренней геометрии. Перечислим их главные свойства.

  • Через данную точку поверхности в заданном направлении проходит одна и только одна геодезическая.
  • На достаточно малом участке поверхности две точки всегда можно соединить геодезической, и притом только одной. Пояснение: на сфере противоположные полюса соединяет бесконечное количество меридианов, а две близкие точки можно соединить не только отрезком большого круга, но и его дополнением до полной окружности, так что однозначность соблюдается только в малом.
  • Геодезическая является кратчайшей. Более строго: на малом куске поверхности кратчайший путь между заданными точками лежит по геодезической.

Площадь

Ещё один важный атрибут поверхности - её площадь , которая вычисляется по формуле:

Определение. Точка , лежащая на поверхности второго порядка, заданной относительно ОДСК общим уравнением (1) называется неособой, если среди трёх чисел: есть хотя бы одно, не равное нулю.

Таким образом, точка , лежащая на поверхности второго порядка, является не особой тогда и только тогда, когда она является её центром, иначе, когда поверхность коническая, а точка - вершина этой поверхности.

Определение. Касательной прямой к поверхности второго порядка в данной на ней не особой точке называется прямая, проходящая через эту точку, пересекающая поверхность второго порядка в дву-кратной точке или являющаяся прямолинейной образующей поверхности.

Теорема 3. Касательные прямые к поверхности второго порядка в данной на ней не особой точке лежат в одной плоскости, называемой касательной плоскостью к поверхности в рассматриваемой точке. Уравнение касательной плоскости имеет

Доказательство. Пусть , , параметрические уравнения прямой, проходящей через неособую точку по-верхности второго порядка, заданной уравнением (1). Подставляя в уравнение (1) , , вместо , , , получим:

Так как точка лежит на поверхности (1), то и из уравнения (3) находим (это значение соответствует точке ). Для того, чтобы точка пересечения прямой с поверхностью (1) была двойной, или чтобы прямая целиком лежала на поверхности, необходимо и достаточно, чтобы выполнялось равенство:

Если при этом:

То точка пересечения прямой линии с поверхностью (1) двойная. А если:

То прямая целиком лежит на поверхности (1).

Из соотношений (4) и , , следует, что координаты , , любой точки , лежащей на любой касательной к поверхности (1) удовлетворяют уравнению:

Обратно, если координаты какой-нибудь точки , отличной от , удовлетворяют этому уравнению, то координаты , , вектора , удовлетворяют соотношению (4), а это значит, что прямая - касательная к рассматриваемой поверхности.

Так как точка - неособая точка поверхности (1), то среди чисел , , есть по крайней мере одно, не равное нулю; значит уравнение (5) есть уравнение первой степени относительно . Это и есть уравнение плоскости, касательной к поверхности (1) в данной на ней не особой точке .

Исходя из канонических уравнений поверхностей второго порядка легко составить уравнения касательных плоскостей к эллипсоиду, гиперболоиду и т.д. в данной на них точке .

1). Касательная плоскость к эллипсоиду:

2). Касательная плоскость к одно и двуполостному гиперболоидам:

3). Касательная плоскость к эллиптическому и гиперболическому параболоидам:

§ 161.Пересечение касательной плоскости с поверхностью второго порядка.

Примем неособую точку поверхности второго порядка за начало координат ОДСК, оси и расположим в плоскости касательной к поверхности в точке . Тогда в общем уравнении поверхности (1) свободный член равен нулю: , а уравнение плос-кости, касающейся поверхности в начале координат, должно иметь вид: .

Но уравнение плоскости, проходящей через начало координат имеет вид: .

И, так как это уравнение должно быть эквивалентно уравнению , то , , .

Итак, в выбранной системе координат уравнение поверхности (1) должно иметь вид:

Обратно, если , то уравнение (6) является уравнением поверхности, проходящей через начало координат , а плоскость - касательная плоскость к этой поверхности в точке . Уравнение линии, по которой касательная плоскость к поверхности в точке пересекает поверхность (6) имеет вид:

Если . Это инвариант в теории инвариантов для линий второго порядка. Уравнение (7)

Это же линия второго порядка. По виду этой линии инвариант , поэтому:

При здесь две мнимые пересекающиеся прямые.

При - две действительные пересекающиеся прямые.

Если , но хотя бы один из коэффициентов , , не равен нулю, то линия пересечения (7) - две совпадающие прямые.

Наконец, если , то плоскость

входит в состав данной поверхности, а сама поверхность распадается, следовательно, на пару плоскостей

§ 162.Эллиптические, гиперболические или параболические точки поверхности второго порядка.

1. Пусть касательная плоскость к поверхности второго порядка в точке пересекает её по двум мни-мым пересекающимся прямым. В этом случае точка называется эллиптической точкой поверхности.

2. Пусть касательная плоскость к поверхности второго порядка в точке пересекает её по двум действительным прямым, пересекающимся в точке касания. В этом случае точка называется гиперболической точкой поверхности.

3. Пусть касательная плоскость к поверхности второго порядка в точке пересекает её по двум совпадающим прямым. В этом случае точка называется параболической точкой поверхности.

Теорема 4. Пусть поверхность второго порядка относительно ОДСК задана уравнением (1) и данное уравнение (1) является уравнением действительной нераспадающейся поверхностью второго порядка. Тогда, если ; то все точки поверхности эллиптические.

Доказательство. Введём новую систему координат , выбирая за начало координат любую неособую точку данной поверхности и располагая оси и в плоскости, касательной к поверхности в точке . Уравнение (1) в новой системе координат преобразуется к виду:

Где . Вычислим инвариант для этого уравнения .

Так как при переходе от одной ОДСК к другой ОДСК знак не меняется, то знаки и противоположны, поэтому, если , то ; и, как следует из классификации (см. § 161) касательная плоскость к поверхности в точке пересекает поверхность по двум мнимым пересекающимся прямым, т.е. - эллиптическая точка.

2) Однополостный гиперболоид и гиперболический параболоид состоят из гиперболических точек.

3) Действительный конус второго порядка (вершина исключается), эллиптический (действительный), гиперболический и параболический цилиндры состоят из параболических точек.

Параболический цилиндр .

Чтобы определить расположение параболического цилиндра, достаточно знать:

1) плоскость симметрии, параллельную образующим цилиндра;

2) касательную плоскость к цилиндру, перпендикулярную к этой плоскости симметрии;

3) вектор, перпендикулярный к этой касательной плоскости и направленный в сторону вогнутости цилиндра.

В случае, если общее уравнение определяет параболический цилиндр, оно может быть переписано в виде:

Подберем m так, чтобы плоскости

были бы взаимно перпендикулярными:

При этом значении m плоскость

будет плоскостью симметрии, параллельной образующим цилиндра.

Плоскость

будет касательной плоскостью к цилиндру, перпендикулярной к указанной плоскости симметрии, а вектор

будет перпендикулярен к найденной касательной плоскости и направлен в сторону вогнутости цилиндра.

1°. Уравнения касательной плоскости и нормали для случая явного задания поверхности.

Рассмотрим одно из геометрических приложений частных производных функции двух переменных. Пусть функция z = f (x ; y ) дифференцируема в точке (x 0 ; у 0) некоторой области D Î R 2 . Рассечем поверхность S , изображающую функцию z, плоскостями х = х 0 и у = у 0 (рис. 11).

Плоскость х = x 0 пересекает поверхность S по некоторой линии z 0 (y ), уравнение которой получается подстановкой в выражение исходной функции z = =f (x ; y ) вместо х числа x 0 . Точка M 0 (x 0 ; y 0, f (x 0 ; y 0)) принадлежит кривой z 0 (y ). В силу дифференцируемой функции z в точке М 0 функция z 0 (y ) также является дифференцируемой в точке у =у 0 . Следовательно, в этой точке в плоскости х = х 0 к кривой z 0 (y ) может быть проведена касательная l 1 .

Проводя аналогичные рассуждения для сечения у = у 0 , построим касательную l 2 к кривой z 0 (x ) в точке х = x 0 - Прямые 1 1 и 1 2 определяют плоскость , которая называется касательной плоскостью к поверхности S в точке М 0 .

Составим ее уравнение. Так как плоскость проходит через точку Mo (x 0 ; y 0 ; z 0), то ее уравнение может быть записано в виде

А(х - хо) + В(у - уо) + C (z - zo ) = 0,

которое можно переписать так:

z -z 0 = A 1 (x – х 0) + B 1 (y – у 0) (1)

(разделив уравнение на -С и обозначив ).

Найдем A 1 и B 1 .

Уравнения касательных 1 1 и 1 2 имеют вид

соответственно.

Касательная l 1 лежит в плоскости a , следовательно, координаты всех точек l 1 удовлетворяют уравнению (1). Этот факт можно записать в виде системы

Разрешая эту систему относительно B 1 , получим, что .Проводя аналогичные рассуждения для касательной l 3 , легко установить, что .

Подставив значения А 1 и B 1 в уравнение (1), получаем искомое уравнение касательной плоскости:

Прямая, проходящая через точку М 0 и перпендикулярная касательной плоскости, построенной в этой точке поверхности, называется еенормалью.

Используя условие перпендикулярности прямой и плоскости, легко получить канонические уравнения нормали:

Замечание. Формулы касательной плоскости и нормали к поверхности получены для обыкновенных, т. е. не особых, точек поверхности. Точка М 0 поверхности называется особой, если в этой точке все частные производные равны нулю или хотя бы одна из них не существует. Такие точки мы не рассматриваем.

Пример. Написать уравнения касательной плоскости и нормали к поверхности в ее точке М(2; -1; 1).

Решение. Найдем частные производные данной функции и их значения в точке М

Отсюда, применяя формулы (2) и (3), будем иметь: z-1=2(х-2)+2(у+1) или 2х+2у-z-1=0 - уравнение касательной плоскости и - уравнения нормали.

2°. Уравнения касательной плоскости и нормали для случая неявного задания поверхности.

Если поверхность S задана уравнением F (x ; у; z ) = 0, то уравнения (2) и (3), с учетом того, что частные производные могут быть найдены как производные неявной функции.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: