Сообщение на тему представление о правильных многогранников. Симметрия в пространстве

Михайлова Полина Когай Юля

Целью

Скачать:

Предварительный просмотр:

ПРОЕКТ

(статья по математике)

Выполнили:

Ученицы 11 класса

Михайлова Полина

Когай Юля

Руководитель:

Учитель математики

Лебедева Ирина Николаевна

РЖЕВ 2012

(Л.Кэрролл)

Введение

Целью нашего исследования являлось изучение правильных многогранников, их видов, свойств.

1. Правильные многогранники

Рис.1.

2. Свойства многогранников

В дословном переводе с

Евклид

Платон и Платоновы тела

Многогранники

земля/вода = воздух/огонь .

Многогранник

Число сторон грани

Число граней

Число рёбер

Число вершин

Тетраэдр

Куб

Октаэдр

Икосаэдр

Додекаэдр

Архимед Сиракузский

квазиправильными

ромбокубооктаэдром и ромбоикосододекаэдром

Заключение


Предварительный просмотр:

МОУ СОШ №1 г.Ржева Тверской обл

ПРОЕКТ

Правильные многогранники вокруг нас

(статья по математике)

Выполнили:

Ученицы 11 класса

Михайлова Полина

Когай Юля

Руководитель:

Учитель математики

Лебедева Ирина Николаевна

РЖЕВ 2012

Правильных многогранников вызывающе мало,

но этот весьма скромный по численности отряд

сумел пробраться в самые глубины различных наук.

(Л.Кэрролл)

Введение

Есть в школьной геометрии особые темы, которые ждешь с нетерпением,

предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести "Правильные многогранники". Здесь не только открывается

удивительный мир геометрических тел, но и неповторимые свойства, особенности которых вызывают споры у ученых и философов.

В течение всей жизни человек тесно связан с многогранниками. Несмотря на отсутствие знания таких сложных терминов, как «тетраэдр», «октаэдр», «додекаэдр» и др., он уже с самого раннего детства испытывает интерес к этим уникальным фигурам. Ведь суть «кубиков» - одной из самых популярных детских игр - состоит в том, чтобы построить из многогранников объект.

На протяжении многих веков людей словно притягивают эти тела. Древние египтяне строили гробницы своим фараонам (которых они считали полубогами) в форме тетраэдра, что еще раз подчеркивает величие и этих фигур.

Но не только руками человека создаются эти загадочные тела. Одни из правильных тел встречаются в природе в виде кристаллов, другие – в виде вирусов (были обнаружены учеными с помощью электрического микроскопа). А биологи говорят о том, что шестиугольные соты пчел, содержащие мед, имеют форму правильного многогранника. Существовала гипотеза, что именно правильная шестиугольная форма сот помогает сохранить полезные свойства этого ценного продукта.

Так что же представляют собой эти столь совершенные тела?

Целью нашего исследования являлось изучение правильных многогранников, их видов, свойств.

В задачи нашего исследования входило:

  • Дать понятие правильных многогранников (на основе определения многогранников).
  • Доказать существование только 5 типов правильных многогранников.
  • Рассмотреть свойства правильных многогранников.
  • Познакомиться с интересными историческими фактами, связанными с правильными многогранниками.
  • Ознакомление с историей изучения многогранников.
  • Показать, как можно с помощью куба построить другие виды правильных многогранников.
  • Рассмотреть связь правильных многогранников с природой.

1. Правильные многогранники

Многогранник – это часть пространства, ограниченная совокупностью конечного числа плоских многоугольников, соединённых таким образом, что каждая сторона любого многогранника является стороной ровно одного многоугольника. Многоугольники называются гранями, их стороны – рёбрами, а вершины – вершинами.

Правильным называется многогранник, у которого все грани это правильные многоугольники и все многогранные углы при вершинах равны.

Всего существует пять многогранников - ни больше ни меньше. Подтвердить это можно с помощью развертки выпуклого многогранного угла. В самом деле, для того чтобы получить какой-нибудь правильный многогранник согласно его определению, в каждой вершине должно сходиться одинаковое количество граней, каждая из которых является правильным многоугольником. Сумма плоских углов многогранного угла должна быть меньше 360 о , иначе никакой многогранной поверхности не получится.

Перебирая возможные целые решения неравенств: 60к

Рис.1.

2. Свойства многогранников

Тетраэдр - составлен из четырёх равносторонних треугольников. Каждая его вершина является вершиной трёх треугольников и в каждой вершине сходится по три ребра и по три грани. Следовательно, сумма плоских углов при каждой вершине равна 180º. У тетраэдра: 4 грани, 4 вершины и 6 ребер.

Октаэдр - составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырёх треугольников и в каждой вершине сходится по четыре ребра и по четыре грани. Следовательно, сумма плоских углов при каждой вершине 240º. У октаэдра: 8 граней, 6 вершин и 12 ребер.

Куб - составлен из шести квадратов. Каждая вершина куба является вершиной трёх квадратов и в каждой вершине сходится по три ребра и три грани. Следовательно, сумма плоских углов при каждой вершине равна 270º. У него: 6 граней, 8 вершин и 12 ребер.

Додекаэдр - составлен из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников и в каждой вершине сходится по три ребра и три грани. Следовательно, сумма плоских углов при каждой вершине равна 324º.У додекаэдра:12 граней, 20 вершин и 30 ребер.

3. История изучения многогранников.

Названия многогранников пришли из Древней Греции, в них указывается число граней: «эдра» - грань; «тетра» - 4; «гекса» - 6; «окта» - 8; «икоса» - 20; «додека» - 12. В дословном переводе с

греческого "тетраэдр", "октаэдр", "гексаэдр", "додекаэдр", "икосаэдр"

означают: "четырехгранник", "восьмигранник", "шестигранник".

"двенадцатигранник", "двадцатигранник". Этим красивым телам посвящена 13-я книга "Начал" Евклида.

Кстати, раз уж заговорили о Евклиде, то давайте познакомимся с ним поближе. С ним, и с другими учеными, изучавшими многогранники.

Евклид (ок. 300 г. до н. э.) - древнегреческий математик.

Основное сочинение Евклида называется «Начала». «Начала» состоят из тринадцати книг. XIII книга посвящена построению пяти правильных многогранников; считается, что часть построений была разработана Теэтетом Афинским. В дошедших до нас рукописях к этим тринадцати книгам прибавлены ещё две. Некоторый «платонизм» Евклида связан с тем, что в Тимее Платона рассматривается учение о четырёх элементах, которым соответствуют четыре правильных многогранника (тетраэдр - огонь, октаэдр - воздух, икосаэдр - вода, куб - земля), пятый же многогранник, додекаэдр, «достался в удел фигуре вселенной». «Начала» могут рассматриваться как развёрнутое со всеми необходимыми посылками и связками учение о построении пяти правильных многогранников - так называемых «платоновых тел», завершающееся доказательством того факта, что других правильных тел, кроме этих пяти, не существует.

Платон и Платоновы тела

Платон (Platon) (род. 427 - ум. 347 гг.до н.э.) - греческий философ. Родился в Афинах. Настоящее имя Платона было Аристокл.

Многогранники называют телами Платона, т.к. они занимали важное место в философской концепции Платона об устройстве мироздания. Четыре многогранника олицетворяли в ней четыре сущности или "стихии". Тетраэдр символизировал огонь, т.к. его вершина устремлена вверх; икосаэдр - воду, т.к. он самый "обтекаемый"; куб - землю, как самый "устойчивый"; октаэдр - воздух, как самый "воздушный". Пятый многогранник, додекаэдр, воплощал в себе "все сущее", символизировал все мироздание, считался главным.

Гармоничные отношения древние греки считали основой мироздания, поэтому четыре стихии у них были связаны такой пропорцией: земля/вода = воздух/огонь .

Атомы "стихий" настраивались Платоном в совершенных консонансах, как четыре струны лиры. Напомню, что консонансом называется приятное созвучие. Надо сказать, что своеобразные музыкальные отношения в платоновых телах являются чисто умозрительными и не имеют под собой никакой геометрической основы. Этими отношениями не связаны ни число вершин платоновых тел, ни обьемы правильных многогранников, ни число ребер или граней.

В связи с этими телами уместно будет сказать, что первая система элементов, включавшая четыре элемента - землю, воду, воздух и огонь, - была канонизирована Аристотелем. Эти элементы оставались четырьмя краеугольными камнями мироздания в течение многих веков. Вполне возможно отождествить их с известными нам четырьмя состояниями вещества - твердым, жидким, газообразным и плазменным.

Характеристики платоновых тел

Многогранник

Число сторон грани

Число граней, сходящихся в каждой вершине

Число граней

Число рёбер

Число вершин

Тетраэдр

Куб

Октаэдр

Икосаэдр

Додекаэдр

Архимед Сиракузский

Архимед обобщил понятие правильного многогранника и открыл новые математические объекты – полуправильные многогранники. Так он назвал многогранники, у которых все грани – правильные многоугольники более как одного рода, а все многогранные углы конгруэнтны. Только в наше время удалось доказать, что тринадцатью открытыми Архимедом полуправильными многогранниками исчерпывается все множество этих геометрических фигур.

Множество архимедовых тел можно разбить на несколько групп.

Первую из них составят пять многогранников, которые получаются из платоновых тел в результате их усечения. Так могут быть получены пять архимедовых тел: усечённый тетраэдр, усечённый гексаэдр (куб), усечённый октаэдр, усечённый додекаэдр и усечённый икосаэдр.

Другую группу составляют всего два тела, именуемых также квазиправильными многогранниками. Эти два тела носят названия: кубооктаэдр и икосододекаэдр.

Два последующих многогранника называются ромбокубооктаэдром и ромбоикосододекаэдром . Иногда их называют также «малым ромбокубооктаэдром» и «малым ромбоикосододекаэдром» в отличие от большого ромбокубооктаэдра и большого ромбоикосододекаэдра.

Наконец существуют две так называемые «курносые» модификации - одна для куба, другая - для додекаэдра. Для каждой из них характерно несколько повёрнутое положение граней, что даёт возможность построить два различных варианта одного и того же «курносого» многогранника (каждый из них представляет собой как бы
зеркальное отражение другого).

Вклад Кеплера в теорию многогранника – это, во-первых, восстановление математического содержания утерянного трактата Архимеда о полуправильных выпуклых однородных многогранниках. Еще более существенным было предложение Кеплера рассматривать невыпуклые многогранники со звездчатыми гранями, подобными пентаграмме и последовавшее за этим открытие двух правильных невыпуклых однородных многогранников – малого звездчатого додекаэдра и большого звездчатого додекаэдра.

Весьма оригинальна космологическая гипотеза Кеплера, в которой он попытался связать некоторые свойства Солнечной системы со свойствами правильных многогранников. Кеплер предположил, что расстояния между шестью известными тогда планетами выражаются через размеры пяти правильных выпуклых многогранников (платоновых тел). Между каждой парой "небесных сфер", по которым, согласно этой гипотезе, вращаются планеты, Кеплер вписал одно из платоновых тел. Вокруг сферы Меркурия, ближайшей к Солнцу планеты, описан октаэдр. Этот октаэдр вписан в сферу Венеры, вокруг которой описан икосаэдр. Вокруг икосаэдра описана сфера Земли, а вокруг этой сферы – додекаэдр. Додекаэдр вписан в сферу Марса, вокруг которой описан тетраэдр. Вокруг тетраэдра описана сфера Юпитера, вписанная в куб. Наконец, вокруг куба описана сфера Сатурна. Эта модель выглядела для своего времени довольно правдоподобно. Во-первых, расстояния, вычисленные при помощи этой модели, были достаточно близки к истинным (учитывая доступную тогда точность измерения). Во-вторых, модель Кеплера давала объяснение, почему существует только шесть (именно столько было тогда известно) планет – именно шесть планет гармонировали с пятью платоновыми телами. Однако даже на тот момент эта привлекательная модель имела один существенный недостаток: сам же Кеплер показал, что планеты вращаются вокруг Солнца не по окружностям ("сферам"), а по эллипсам (первый закон Кеплера). Нечего и говорить, что позже, с открытием еще трех планет и более точным измерением расстояний, эта гипотеза была полностью отвергнута.

  1. Икосаэдро-додекаэдровая структура Земли .

Существует много данных о сравнении структур и процессов Земли с правильными многогранниками.

Полагают, что четырем геологическим эрам Земли соответствуют четыре силовых каркаса правильных Платоновских тел: Протозоа - тетраэдр (четыре плиты) Палеозою - гексаэдр (шесть плит) Мезозою - октаэдр (восемь плит) Кайнозою - додекаэдр (двенадцать плит).

Существует гипотеза, по которой ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. «Лучи» этого кристалла, а точнее его силовое поле, обусловливают икосаэдро-додекаэдрическую структуру Земли, проявляющуюся в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра. 62 их вершины и середины ребер, называемые узлами, оказывается, обладают рядом специфичecких свойств, позволяющих объяснить многие непонятные явления.

Если нанести на глобус очаги наиболее крупных и примечательных культур и цивилизаций Древнего мира, можно заметить закономерность в их расположении относительно географических полюсов и экватора планеты. Многие залежи полезных ископаемых тянутся вдоль икосаэдрово-додекаэдровой сетки.

Еще более удивительные вещи происходят в местах пересечения этих ребер: тут располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана, здесь шотландское озеро Лох-Несс, Бермудский треугольник. Дальнейшие исследования Земли, возможно, определят отношение к этой красивой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место.

Советские инженеры В. Макаров и В. Морозов потратили десятилетия на исследование данного вопроса. Они пришли к выводу, что развитие Земли шло поэтапно, и в настоящее время процессы, происходящие на поверхности Земли, привели к появлению залежей с икосаэдро-додекаэдровым узором. Еще в 1929 году С.Н. Кислицин в своих работах сопоставлял структуру додекаэдра-икосаэдра с залежами нефти и алмазов.

В. Макаров и В. Морозов утверждают, что в настоящее время процессы жизнедеятельности Земли имеют структуру додекаэдра-икосаэдра. Двадцать районов планеты (вершины додекаэдра) - центры поясов выходящего вещества, основывающих биологическую жизнь (флора, фауна, человек). Центры всех магнитных аномалий и магнитного поля планеты расположены в узлах системы треугольников. К тому же согласно исследованиям авторов, в настоящую эпоху все ближайшие небесные тела свои процессы располагают согласно додекаэдро-икосаэдрной системе, что замечено у Марса, Венеры, Солнца. Аналогичные энергетические каркасы присущи всем элементам Космоса (Галактики, звезды и т. д.). Нечто похожее наблюдается и в микроструктурах. Например, строение аденовирусов имеет форму икосаэдра.

5. Правильные многогранники и природа.

Правильные многогранники – самые выгодные фигуры, поэтому они широко распространены в природе. Подтверждением тому служит форма некоторых кристаллов. Например, кристаллы поваренной соли имеют форму куба. При производстве алюминия пользуются алюминиево-калиевыми кварцами, монокристалл которых имеет форму правильного октаэдра. Получение серной кислоты, железа, особых сортов цемента не обходится без сернистого колчедана. Кристаллы этого химического вещества имеют форму додекаэдра. В разных химических реакциях применяется сурьменистый сернокислый натрий – вещество, синтезированное учёными. Кристалл сурьменистого сернокислого натрия имеет форму тетраэдра. Последний правильный многогранник – икосаэдр передаёт форму кристаллов бора.

Правильные многогранники встречаются так же и в живой природе. Например, скелет одноклеточного организма феодарии (Circjgjnia icosahtdra) по форме напоминает икосаэдр. Большинство феодарий живут на морской глубине и служат добычей коралловых рыбок. Но простейшее животное защищает себя двенадцатью иглами, выходящими из 12 вершин скелета. Оно больше похоже на звёздчатый многогранник. Из всех многогранников с тем же числом граней икосаэдр имеет наибольший объём при наименьшей площади поверхности. Это свойство помогает морскому организму преодолевать давление толщи воды.

Икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет под теми же углами, что и поток атомов на вирус. Оказалось, что только один многогранник дает точно такую же тень - икосаэдр.

Заключение

Основной целью представленной работы являлось изучение правильных многогранников, их видов и свойств. Для достижения это й цели был проведен сравнительный анализ учебной и научно-популярной литературы, а также ресурсов сети Интернет.

В процессе исследования мы изучили удивительные особенности строения правильных многогранников, их виды и свойства, особенности строения. Познакомились с интересными историческими гипотезами и фактами. Увидели красоту, совершенство и гармонию форм этих тел, которые изучаются учеными на протяжении многих столетий и не перестают удивлять нас. Узнали, что в строении нашей, казалось бы, шарообразной планеты присутствуют правильные многогранники, что еще раз доказывает их значение в окружающем нас мире. И многие современные ученые склоняются к гипотезе, что вещества в природе состоят именно из этих уникальных фигур.

Подводя итоги, можно считать цели исследования достигнутыми. В дальнейшем тему работы можно развивать, например, рассмотреть использование свойств, особенностей симметрии правильных многогранников в архитектуре, технике, искусстве.

Список используемой литературы

1.Атанасян Л.С., Бутузов В.Ф. Геометрия 10-11 класс – 2008. - №14

2.Потоскуев Е.В., Звавич Л.И. Геометрия 11 класс - 2008 - №4

3.Паповский В.М. Углубленное изучение геометрии в 10-11 классах

4. Веленкин Н.Я. За страницами учебника математики: Арифметика. Алгебра. Геометрия – 1996

5. Математика: Школьная энциклопедия – 2003

6. Депман И.Я. ,Веленкин Н.Я. За страницами учебника математики – 1989

7. Энциклопедия для детей. Аванта+ Математика - 2003


Федеральное агентство по образованию
Государственное образовательное учреждение
высшего профессионального образования
«Поволжская государственная социально-гуманитарная академия»

Факультет начального образования

Реферат

Многогранник. Изучение многогранника

в начальной школе.

Выполнила: студентка

51группы ФНО

Петрушина О.В.

САМАРА 2009

Введение…………………………………………………………………….4

Основные понятия………………………………………………………….6

Исторические сведения о правильных многогранниках……………..….9

Формула Эйлера…………………………………………………………...13

Правильные многогранники вокруг нас………………………………....14

Заключение………………………………………………………………...18

Список литературы…………………………………………………...…...20

Введение

Тема «Многогранники» одна из основных в традиционном курсе школьной геометрии. Они составляют, можно сказать, центральный предмет стереометрии. Изучение параллельных и перпендикулярных прямых и плоскостей, двугранных углов и другое, так же как введение векторов и координат,- все это только начала стереометрии, подготовка средств для исследования ее более содержательных объектов – главным образом тел и поверхностей.
Центральная роль многогранников определяется прежде всего тем, что многие результаты, относящиеся к другим телам, получаются исходя из соответствующих результатов для многогранников; Достаточно вспомнить определение объемов тел и площадей поверхностей путем предельного перехода от многогранников.
Кроме того, многогранники сами по себе представляют чрезвычайно содержательный предмет исследования, выделяясь среди всех тел многими интересными свойствами, специально к ним относящимися теоремами и задачами. Можно, например, вспомнить теорему Эйлера о числе граней, ребер и вершин, симметрию правильных многогранников, вопрос о заполнении пространства многогранниками и др.
Многогранникам должно быть уделено в школьном курсе больше внимания еще и потому, что они дают особенно богатый материал для развития пространственных представлений, для развития того соединения живого пространственного воображения со строгой логикой, которое составляет сущность геометрии. Уже самые простые факты, касающиеся многогранников, требуют такого соединения, которое оказывается при этом не совсем легким делом. Даже такой простой факт, как пересечение диагоналей параллелепипеда в одной точке, требует усилия воображения, чтобы его увидеть наглядно, и нуждается в строгом доказательстве.
Более того, использование многогранников с самого начала изучения стереометрии служит различным дидактическим целям. На многогранниках удобно демонстрировать взаимное расположение прямых и плоскостей в пространстве, показывать применение признаков параллельности и перпендикулярности прямых и плоскостей в пространстве. Иллюстрация первых теорем стереометрии на конкретных моделях повышает интерес учащихся к предмету.
Также одной из основных задач обучения математики является развитие у учащихся абстрактного мышления. Этой цели в значительной мере способствует применение наглядных пособий, причем не только в младших классах, но и в старших. Широкие возможности для реализации этой цели предоставляет тема «Многогранники», в частности, самостоятельное изготовление учениками наглядных пособий. В процессе изготовления моделей многогранников, кроме теоретических знаний и навыков, ученики закрепляют сформировавшиеся новые понятия при помощи чертежа и фактического решения задач на построение. При самостоятельном изготовлении моделей образ создается по частям, в силу этого с ними можно производить различные манипуляции. При этом все их свойства и особенности легко познаются и прочно закрепляются в памяти учащихся.

Основные понятия.

    Многогранник – это геометрическое тело, ограниченное со всех сторон плоскими многоугольниками, называемыми гранями.

Стороны граней – рёбра многогранника, а концы рёбер – вершины многогранника. По числу граней различают четырёхгранники, пятигранники и т. д.

    Многогранник называется выпуклым, если он весь расположен по одну сторону от плоскости, каждой из его граней.

    Выпуклый многогранник называется правильным, если все его грани – одинаковые правильные многоугольники, в каждой вершине сходится одно и то же число рёбер, а соседние грани образуют равные углы.

На рисунке изображены тетраэдр, гексаэдр, октаэдр, додекаэдр и икосаэдр. Их форма – образец совершенства! А почему правильные многогранники получили именно такое название? Какими особенностями они обладают? Как изготовить модель какого-либо правильного многогранника? Где можно встретить эти удивительные тела?

Ответить на эти и другие вопросы: цель данной работы.


Все правильные многогранники имеют разное число граней и названия получили по этому числу.

    Тетраэдр (от,тетра”– четыре и греческого,hedra” – грань) составлен из 4-х правильных треугольников, в каждой его вершине сходятся 3 ребра.

    Гексаэдр (от греческого,гекса” – шесть и,hedra” – грань) имеет 6 квадратных граней, в каждой его вершине сходятся 3 ребра.

Гексаэдр больше известен как куб (от латинского, cubus” ; от греческого,kubos”.

    Октаэдр (от греческого okto – восемь и hedra – грань) имеет 8 граней (треугольных), в каждой вершине сходятся 4 ребра.

    Додекаэдр (от греческого dodeka – двенадцать и hedra – грань) имеет 12 граней (пятиугольных), в каждой вершине сходятся 3 ребра.

    Икосаэдр (от греческого eikosi – двадцать и hedra – грань) имеет 20 граней (треугольных), в каждой вершине сходится 5 рёбер. (5, с.267-269)

Оказывается, что правильных многогранников ровно пять - ни больше ни меньше. Ведь для того, чтобы получить какой-нибудь правильный многогранник, в каждой вершине, согласно его определению, должно сходиться одинаковое количество граней, каждая из которых является правильным многоугольником.

Сумма плоских углов многогранного угла должна быть меньше 360 о, иначе никакой многогранной поверхности не получится. Перебирая возможные целые решения неравенств: 60к

Исторические сведения о правильных многогранниках.

Древнегреческий философ Платон, (428 или 427 до н. э. - 348 или 347), проводивший беседы со своими учениками в роще Академа (Академ – древнегреческий мифологический герой, которого, по преданию, похоронили в священной роще недалеко от Афин, откуда и пошло название,академия”), одним из девизов своей школы провозгласил: , Не знающие геометрии не допускаются!”

Правильные многогранники называют также Платоновыми телами. Хотя их знаки пифагорейцы за несколько веков до Платона.

В диалоге,Тимей’’ он связал правильные многогранники с четырьмя основными стихиями. Тетраэдр символизировал огонь, т.к. его вершина устремлена вверх; икосаэдр - воду, т.к. он самый "обтекаемый"; куб - землю, как самый "устойчивый"; октаэдр - воздух, как самый "воздушный". Пятый многогранник, додекаэдр, воплощал в себе "все сущее", символизировал все мироздание, считался главным. Хотя правильные многогранники были известны пифагорейцам за несколько веков до Платона, их называют платоновыми телами. (4, с.340)

Важное место занимали правильные многогранники в системе гармоничного устройства мира И. Кеплера.

Если наблюдать и рассматривать многогранные формы, то можно не только почувствовать их красоту, но и обнаружить некоторые закономерности, возможно, имеющие прикладное значение.

Некоторые из правильных и полуправильных тел встречаются в природе в виде кристаллов, другие - в виде вирусов, простейших микроорганизмов.

Кристаллы - тела, имеющие многогранную форму. Вот один из примеров таких тел: кристалл пирита (сернистый колчедан FeS) - природная модель додекаэдра. Пирит (от греч. “пир” - огонь) - сернистое железо или серный колчедан, наиболее распространенный минерал из группы сульфидов. Размеры кристаллов пирита часто достигают нескольких сантиметров и являются хорошим коллекционным материалом. От других подобных ему минералов отличается твердостью: царапает стекло.

Замечено, что наша матушка-Земля последовательно проходит эволюцию правильных объемных фигур. Существует много данных о сравнении структур и процессов Земли с вышеуказанными фигурами. Полагают, что четырем геологическим эрам Земли соответствуют четыре силовых каркаса правильных Платоновских тел: Протозою - тетраэдр (четыре плиты) Палеозою - гексаэдр (шесть плит) Мезозою - октаэдр (восемь плит) Кайнозою - додекаэдр (двенадцать плит).

Существует гипотеза, по которой ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. «Лучи» этого кристалла, а точнее его силовое поле, обусловливают икосаэдро-додекаэдрическую структуру Земли, проявляющуюся в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра. 62 их вершины и середины ребер, называемые узлами, оказывается, обладают рядом специфичecких свойств, позволяющих объяснить многие непонятные явления.

Если нанести на глобус очаги наиболее крупных и примечательных культур и цивилизаций Древнего мира, можно заметить закономерность в их расположении относительно географических полюсов и экватора планеты. Многие залежи полезных ископаемых тянутся вдоль икосаэдрово - додекаэдровой сетки. Еще более удивительные вещи происходят в местах пересечения этих ребер: тут располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана, здесь шотландское озеро Лох-Несс, Бермудский треугольник. Дальнейшие исследования Земли, возможно, определят отношение к этой красивой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место.

Советские инженеры В. Макаров и В. Морозов потратили десятилетия на исследование данного вопроса. Они пришли к выводу, что развитие Земли шло поэтапно, и в настоящее время процессы, происходящие на поверхности Земли, привели к появлению залежей с икосаэдро - додекаэдровым узором. Еще в 1929 году С.Н. Кислицин в своих работах сопоставлял структуру додекаэдра-икосаэдра с залежами нефти и алмазов.

В. Макаров и В. Морозов утверждают, что в настоящее время процессы жизнедеятельности Земли имеют структуру додекаэдра-икосаэдра. Двадцать районов планеты (вершины додекаэдра) - центры поясов выходящего вещества, основывающих биологическую жизнь (флора, фауна, человек). Центры всех магнитных аномалий и магнитного поля планеты расположены в узлах системы треугольников. К тому же согласно исследованиям авторов, в настоящую эпоху все ближайшие небесные тела свои процессы располагают согласно додекаэдро - икосаэдрной системе, что замечено у Марса, Венеры, Солнца. Аналогичные энергетические каркасы присущи всем элементам Космоса (Галактики, звезды и т. д.).

С позиций изучения симметрии, учитывая представление о додекаэдро-икосаэдрическом силовом каркасе Земли как планеты, следует признать, что в этом смысле Земля является живым существом. С душою, которую П.А. Флоренский назвал “пневматосфера”, со свободой воли и разумом.

Додекаэдрическая структура, по мнению Д. Винтера (американского математика), присуща не только энергетическому каркасу Земли, но и строению живого вещества. В процессе деления яйцеклетки сначала образуется тетраэдр из четырех клеток, затем октаэдр, куб и, наконец, додекаэдро-икосаэдрическая структура гаструлы. И наконец, самое, пожалуй, главное – структура ДНК генетического кода жизни – представляет собой четырехмерную развертку (по оси времени) вращающегося додекаэдра! Таким образом, оказывается, что вся Вселенная – от Метагалактики и до живой клетки – построена по одному принципу – бесконечно вписываемых друг в друга додекаэдра и икосаэдра, находящихся между собой в пропорции золотого сечения!

Существует семейство тел, родственных платоновым - это полуправильные выпуклые многогранники, или Архимедовы тела. У них все многогранные углы равны, все грани - правильные многоугольники, но нескольких различных типов. Называют 13 или 14 архимедовых тел (число неточное, поскольку псевдоромбокубоктаэдр иногда не причисляют к этому семейству).

Кроме того, имеют равные многогранные углы и правильные грани нескольких типов тела из двух бесконечных семейств - призмы и антипризмы.

Кеплер Иоганн (Kepler I, 1571-1630г) – немецкий астроном. Открыл законы движения планет. В 1596 году Кеплер предложил правило, по которому вокруг сферы Земли описывается додекаэдр, а в нее вписывается икосаэдр. («Гармония мира», 1619г.) И.Кеплер предположил, что расстояния между орбитами планет можно получить на основании Платоновых тел, вложенных друг в друга. Результаты его расчётов хорошо согласовались с действительными расстояниями между планетными орбитами.

Весьма оригинальна космологическая гипотеза Кеплера, в которой он попытался связать некоторые свойства Солнечной системы со свойствами правильных многогранников. Кеплер предположил, что расстояния между шестью известными тогда планетами выражаются через размеры пяти правильных выпуклых многогранников (Платоновых тел). Между каждой парой небесных сфер, по которым, согласно этой гипотезе, вращаются планеты, Кеплер вписал одно из Платоновых тел. Вокруг сферы Меркурия, ближайшей к Солнцу планеты, описан октаэдр. Этот октаэдр вписан в сферу Венеры, вокруг которой описан икосаэдр. Вокруг икосаэдра описана сфера Земли, а вокруг этой сферы - додекаэдр.

Додекаэдр вписан в сферу Марса, вокруг которой описан тетраэдр. Вокруг тетраэдра описана сфера Юпитера, вписанная в куб. Наконец, вокруг куба описана сфера Сатурна.

Эта модель выглядела для своего времени довольно правдоподобно. Во-первых, расстояния, вычисленные при помощи этой модели, были достаточно близки к истинным (учитывая доступную тогда точность измерения). Во-вторых, модель Кеплера давала объяснение, почему существует только шесть (именно столько было тогда известно) планет - именно шесть планет гармонировали с пятью Платоновыми телами.

Формула Эйлера.

    Подсчитаем число вершин (В), граней (Г), рёбер (Р) запишем результаты в таблицу.

Многогранник

Тетраэдр

Гексаэдр

Додекаэдр

Икосаэдр


В последней колонке для всех многогранников один и тот же результат: В+Г- Р=2. Доказал это удивительное соотношение один из величайших математиков Леонард Эйлер (1707 – 1783), поэтому формула названа его именем: формула Эйлера. Этот гениальный учёный, родившийся в Швейцарии, почти всю жизнь прожил в России, и мы с полным основанием и гордостью можем считать его соотечественником.

Самое удивительное в этой формуле, что она верна не только для правильных многогранников, но и для всех многогранников!

Ради интереса можно проверить это для нескольких наугад взятых многогранников. (3, с.42)


Правильные многогранники вокруг нас.

В книге немецкого биолога начала нашего века Э. Геккеля "Красота форм в природе" можно прочитать такие строки: "Природа вскармливает на своем лоне неисчерпаемое количество удивительных созданий, которые по красоте и разнообразию далеко превосходят все созданные искусством человека формы". Так, например, одноклеточные организмы феодарии, имеют форму икосаэдра.

Интересно и то, что именно икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет под теми же углами, что и поток атомов на вирус. Оказалось, что только один многогранник дает точно такую же тень - икосаэдр. Его геометрические свойства, о которых говорилось выше, позволяют экономить генетическую информацию. Правильные многогранники - самые выгодные фигуры. И природа этим широко пользуется. Кристаллы некоторых знакомых нам веществ имеют форму правильных многогранников. Так, куб передает форму кристаллов поваренной соли NaCl, монокристалл алюминиево-калиевых квасцов имеет форму октаэдра, кристалл сернистого колчедана FeS имеет форму додекаэдра, сурьменистый сернокислый натрий - тетраэдра, бор - икосаэдра.

Интересная научная гипотеза, авторами которой (в начале 80-х годов) явились московские инженеры В. Макаров и В. Морозов. Они считают, что ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обусловливают икосаэдро-додекаэдрическую структуру Земли, проявляющуюся в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра. Их 62 вершины и середины ребер, называемых авторами узлами, обладают рядом специфических свойств, позволяющих объяснить некоторые непонятные явления.


Если нанести на глобус очаги наиболее крупных и примечательных культур и цивилизаций Древнего мира, можно заметить закономерность в их расположении относительно географических полюсов и экватора планеты. Многие залежи полезных ископаемых тянутся вдоль икосаэдрово-додекаэдровой сетки. Еще более удивительные вещи происходят в местах пересечения этих ребер: тут располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана, здесь шотландское озеро Лох-Несс, Бермудский треугольник. Дальнейшие исследования Земли, возможно, определят отношение к этой красивой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место. (2, с.2)

Заключение.

Исследовательская работа была интересной и разнообразной и заставила понять, что мир, окружающий нас, подчиняется законам геометрии.

В рамках работы над рефератом была изучена литература по теме, выявлены особенности правильных многогранников, изготовлены чертежи, развёртки, модели правильных многогранников.

Многогранник в трёхмерном пространстве, совокупность конечного числа плоских многоугольников, такая, что каждая сторона любого из многоугольников есть одновременно сторона другого (но только одного), называемого смежным с первым (по этой стороне); от любого из многоугольников, составляющих Многогранник , можно дойти до любого из них, переходя к смежному с ним, а от этого, в свою очередь, - к смежному с ним, и т. д. Эти многоугольники называются гранями, их стороны - рёбрами, а их вершины - вершинами Многогранника.

Мир наш исполнен симметрии. С древнейших времен с ней связаны наши представления о красоте. Наверное, этим объясняется непреходящий интерес человека к правильным многогранникам - удивительным символам симметрии, привлекавшим внимание множества выдающихся мыслителей, от Платона и Евклида до Эйлера и Коши.

Форма первоэлемента Земли - куб, Воздуха - октаэдр, Огня - тетраэдр, Воды - икосаэдр, а всему миру творец придал форму пятиугольного додекаэдра. О том, что Земля имеет форму шара, учили Пифагорейцы. По Пифагору, существует 5 телесных фигур: высшее божество само построило Вселенную на основании геометрической формы додекаэдра. Земля подобна Вселенной, и у Платона Земля – тоже додекаэдр.

Греческая математика, в которой впервые появилась теория многогранников, развивалась под большим влиянием знаменитого мыслителя Платона.
Платон (427–347 до н.э.) – великий древнегреческий философ, основатель Академии и родоначальник традиции платонизма. Одним из существенных черт его учения является рассмотрение идеальных объектов - абстракций. Математика, взяв на вооружение идеи Платона, со времен Евклида изучает именно абстрактные, идеальные объекты. Однако и сам Платон, и многие древние математики вкладывали в термин идеальный не только смысл абстрактный, но и смысл наилучший. В соответствии с традицией, идущей от древних математиков, среди всех многогранников лучшие те, которые имеют своими гранями правильные многоугольники.

Теория многогранников – один из увлекательных и ярких разделов математики. В представленном реферате была рассмотрена только одна часть этой теории. Из правильных многогранников – платоновых тел – можно получить так называемые полуправильные многогранники, или архимедовы тела, гранями которых являются также правильные, но разноимённые многоугольники, а также звёздные правильные тела.

Список литературы

1.Дорофеев Г.В., Петерсон Л.Г. Математика. 6 класс. Часть 3 – М: Баласс, 1988.

2.Шарыгин И. Ф., Ерганжиева Л.Н. Наглядная геометрия.Учебное пособие для V – VI классов. – М: Мирос 1992.

3.Энциклопедия для детей. Т. 11. Математика. – М: Аванта плюс, 2002.

4.Энциклопедия для детей. Я познаю мир.Математика. – М: Издательство АСТ, 1999.

5.Погорелов А.В. Геометрия. Учебное пособие для 7-11 классов. М., Просвещение, 1992.

- (определение ) геометрическое тело, ограниченное со всех сторон плоскими многоугольниками - гранями .

Примеры многогранников:

Стороны граней называются ребрами, а концы ребер - вершинами. По числу граней различают 4-гранники, 5-гранники и т.д. Многогранник называется выпуклым , если он весь расположен по одну сторону от плоскости каждой его грани. Многогранник называется правильным , если его грани правильные многоугольники (т.е. такие, у которых все стороны и углы равны) и все многогранные углы при вершинах равны. Существует пять видов правильных многогранников: тетраэдр , куб , октаэдр , додекаэдр , икосаэдр .

Многогранник в трехмерном пространстве (понятие многогранника) - совокупность конечного числа плоских многоугольников такая, что

1) каждая сторона одного является одновременно стороной другого (но только одного), называемого смежным с первым (по этой стороне);

2) от любого из многоугольников, составляющих многогранник, можно дойти до любого из них, переходя к смежному с ним, а от этого в свою очередь - к смежному с ним, и т.д.

Эти многоугольники называются гранями , их стороны ребрами , а их вершины - вершинами многогранника.

Вершины многогранника

Ребра многогранника

Грани многогранника

Многогранник называется выпуклым, если он лежит по одну сторону от плоскости любой его грани.

Из этого определения следует, что все грани выпуклого многогранника являются плоскими выпуклыми многоугольниками. Поверхность выпуклого многогранника состоит из граней, которые лежат в разных плоскостях. При этом ребрами многогранника являются стороны многоугольников, вершинами многогранника – вершины граней, плоскими углами многогранника – углы многоугольников – граней.

Выпуклый многогранник, все вершины которого лежат в двух параллельных плоскостях, называется призматоидом . Призма, пирамида и усеченная пирамида – частные случаи призматоида. Все боковые грани призматоида являются треугольниками или четырехугольниками, причем четырехугольные грани – это трапеции или параллелограммы.

Многогранники не только занимают видное место в геометрии, но и встречаются в повседневной жизни каждого человека. Не говоря уже об искусственно созданных предметах обихода в виде различных многоугольников, начиная со спичечного коробка и заканчивая архитектурными элементами, в природе также встречаются кристаллы в форме куба (соль), призмы (хрусталь), пирамиды (шеелит), октаэдра (алмаз) и т. д.

Понятие многогранника, виды многогранников в геометрии

Геометрия как наука содержит раздел стереометрию, изучающую характеристики и свойства объёмных тела, стороны которых в трёхмерном пространстве образованы ограниченными плоскостями (гранями), носят название "многогранники". Виды многогранников насчитывают не один десяток представителей, отличающихся количеством и формой граней.

Тем не менее у всех многогранников есть общие свойства:

  1. Все они имеют 3 неотъемлемых компонента: грань (поверхность многоугольника), вершина (углы, образовавшиеся в местах соединения граней), ребро (сторона фигуры или отрезок, образованный в месте стыка двух граней).
  2. Каждое ребро многоугольника соединяет две, и только две грани, которые по отношению друг к другу являются смежными.
  3. Выпуклость означает, что тело полностью расположено только по одну сторону плоскости, на которой лежит одна из граней. Правило применимо ко всем граням многогранника. Такие геометрические фигуры в стереометрии называют термином выпуклые многогранники. Исключение составляют звёздчатые многогранники, которые являются производными правильных многогранных геометрических тел.

Многогранники можно условно разделить на:

  1. Виды выпуклых многогранников, состоящих из следующих классов: обычные или классические (призма, пирамида, параллелепипед), правильные (также называемые Платоновыми телами), полуправильные (второе название - Архимедовы тела).
  2. Невыпуклые многогранники (звёздчатые).

Призма и её свойства

Стереометрия как раздел геометрии изучает свойства трёхмерных фигур, виды многогранников (призма в их числе). Призмой называют геометрическое тело, которое имеет обязательно две совершенно одинаковые грани (их также называют основаниями), лежащие в параллельных плоскостях, и n-ое число боковых граней в виде параллелограммов. В свою очередь, призма имеет также несколько разновидностей, в числе которых такие виды многогранников, как:

  1. Параллелепипед - образуется, если в основании лежит параллелограмм - многоугольник с 2 парами равных противоположных углов и двумя парами конгруэнтных противоположных сторон.
  2. имеет перпендикулярные к основанию рёбра.
  3. характеризуется наличием непрямых углов (отличных от 90) между гранями и основанием.
  4. Правильная призма характеризуется основаниями в виде с равными боковыми гранями.

Основные свойства призмы:

  • Конгруэнтные основания.
  • Все рёбра призмы равны и параллельны по отношению друг к другу.
  • Все боковые грани имеют форму параллелограмма.

Пирамида

Пирамидой называют геометрическое тело, которое состоит из одного основания и из n-го числа треугольных граней, соединяющихся в одной точке - вершине. Следует отметить, что если боковые грани пирамиды представлены обязательно треугольниками, то в основании может быть как треугольный многоугольник, так и четырёхугольник, и пятиугольник, и так до бесконечности. При этом название пирамиды будет соответствовать многоугольнику в основании. Например, если в основании пирамиды лежит треугольник - это , четырёхугольник - четырёхугольная, и т. д.

Пирамиды - это конусоподобные многогранники. Виды многогранников этой группы, кроме вышеперечисленных, включают также следующих представителей:

  1. имеет в основании правильный многоугольник, и высота ее проектируется в центр окружности, вписанной в основание или описанной вокруг него.
  2. Прямоугольная пирамида образуется тогда, когда одно из боковых рёбер пересекается с основанием под прямым углом. В таком случае это ребро справедливо также назвать высотой пирамиды.

Свойства пирамиды:

  • В случае если все боковые рёбра пирамиды конгруэнтны (одинаковой высоты), то все они пересекаются с основанием под одним углом, а вокруг основания можно прочертить окружность с центром, совпадающим с проекцией вершины пирамиды.
  • Если в основании пирамиды лежит правильный многоугольник, то все боковые рёбра конгруэнтны, а грани являются равнобедренными треугольниками.

Правильный многогранник: виды и свойства многогранников

В стереометрии особое место занимают геометрические тела с абсолютно равными между собой гранями, в вершинах которых соединяется одинаковое количество рёбер. Эти тела получили название Платоновы тела, или правильные многогранники. Виды многогранников с такими свойствами насчитывают всего пять фигур:

  1. Тетраэдр.
  2. Гексаэдр.
  3. Октаэдр.
  4. Додекаэдр.
  5. Икосаэдр.

Своим названием правильные многогранники обязаны древнегреческому философу Платону, описавшему эти геометрические тела в своих трудах и связавшему их с природными стихиями: земли, воды, огня, воздуха. Пятой фигуре присуждали сходство со строением Вселенной. По его мнению, атомы природных стихий по форме напоминают виды правильных многогранников. Благодаря своему самому захватывающему свойству - симметричности, эти геометрические тела представляли большой интерес не только для древних математиков и философов, но и для архитекторов, художников и скульпторов всех времён. Наличие всего лишь 5 видов многогранников с абсолютной симметрией считалось фундаментальной находкой, им даже присуждали связь с божественным началом.

Гексаэдр и его свойства

В форме шестигранника преемники Платона предполагали сходство со строением атомов земли. Конечно же, в настоящее время эта гипотеза полностью опровергнута, что, однако, не мешает фигурам и в современности привлекать умы известных деятелей своей эстетичностью.

В геометрии гексаэдр, он же куб, считается частным случаем параллелепипеда, который, в свою очередь, является разновидностью призмы. Соответственно и свойства куба связаны со с той лишь разницей, что все грани и углы куба равны между собой. Из этого вытекают следующие свойства:

  1. Все рёбра куба конгруэнтны и лежат в параллельных плоскостях по отношению друг к другу.
  2. Все грани - конгруэнтные квадраты (всего в кубе их 6), любой из которых может быть принят за основание.
  3. Все межгранные углы равны 90.
  4. Из каждой вершины исходит равное количество рёбер, а именно 3.
  5. Куб имеет 9 которые все пересекаются в точке пересечения диагоналей гексаэдра, именуемой центром симметрии.

Тетраэдр

Тетраэдр - это четырёхгранник с равными гранями в форме треугольников, каждая из вершин которых является точкой соединения трёх граней.

Свойства правильного тетраэдра:

  1. Все грани тетраэда - это из чего следует, что все грани четырёхгранника конгруэнтны.
  2. Так как основание представлено правильной геометрической фигурой, то есть имеет равные стороны, то и грани тетраэдра сходятся под одинаковым углом, то есть все углы равны.
  3. Сумма плоских углов при каждой из вершин равняется 180, так как все углы равны, то любой угол правильного четырёхгранника составляет 60.
  4. Каждая из вершин проецируется в точку пересечения высот противоположной (ортоцентр) грани.

Октаэдр и его свойства

Описывая виды правильных многогранников, нельзя не отметить такой объект, как октаэдр, который визуально можно представить в виде двух склеенных основаниями четырёхугольных правильных пирамид.

Свойства октаэдра:

  1. Само название геометрического тела подсказывает количество его граней. Восьмигранник состоит из 8 конгруэнтных равносторонних треугольников, в каждой из вершин которого сходится равное количество граней, а именно 4.
  2. Так как все грани октаэдра равны, равны и его межгранные углы, каждый из которых равняется 60, а сумма плоских углов любой из вершин составляет, таким образом, 240.

Додекаэдр

Если представить, что все грани геометрического тела представляют собой правильный пятиугольник, то получится додекаэдр - фигура из 12 многоугольников.

Свойства додекаэдра:

  1. В каждой вершине пересекаются по три грани.
  2. Все грани равны и имеют одинаковую длину рёбер, а также равную площадь.
  3. У додекаэдра 15 осей и плоскостей симметрии, причём любая из них проходит через вершину грани и середину противоположного ей ребра.

Икосаэдр

Не менее интересная, чем додекаэдр, фигура икосаэдр представляет собой объёмное геометрическое тело с 20 равными гранями. Среди свойств правильного двадцатигранника можно отметить следующие:

  1. Все грани икосаэдра - равнобедренные треугольники.
  2. В каждой вершине многогранника сходится пять граней, и сумма смежных углов вершины составляет 300.
  3. Икосаэдр имеет так же, как и додекаэдр, 15 осей и плоскостей симметрии, проходящих через середины противоположных граней.

Полуправильные многоугольники

Кроме Платоновых тел, в группу выпуклых многогранников входят также Архимедовы тела, которые представляют собой усечённые правильные многогранники. Виды многогранников данной группы обладают следующими свойствами:

  1. Геометрические тела имеют попарно равные грани нескольких типов, например, усечённый тетраэдр имеет так же, как и правильный тетраэдр, 8 граней, но в случае Архимедова тела 4 грани будут треугольной формы и 4 - шестиугольной.
  2. Все углы одной вершины конгруэнтны.

Звёздчатые многогранники

Представители необъёмных видов геометрических тел - звёздчатые многогранники, грани которых пересекаются друг с другом. Они могут быть образованы путём слияния двух правильных трёхмерных тел либо в результате продолжения их граней.

Таким образом, известны такие звёздчатые многогранники, как: звёздчатые формы октаэдра, додекаэдра, икосаэдра, кубооктаэдра, икосододекаэдра.

На данном уроке мы опишем виды симметрии в пространстве, познакомимся с понятием правильного многогранника.

Как и в планиметрии, в пространстве мы будем рассматривать симметрию относительно точки и относительно прямой, но дополнительно появится симметрия относительно плоскости.

Определение.

Точки А и называются симметричными относительно точки О (центра симметрии), если О - середина отрезка . Точка О симметрична сама себе.

Чтобы для заданной точки А получить симметричную ей точку относительно точки О, нужно провести прямую через точки А и О, отложить от точки О отрезок, равный ОА, и получить искомую точку (рисунок 1).

Рис. 1. Симметрия относительно точки

Аналогично точки В и симметричны относительно точки О, т. к. О - середина отрезка .

Так, задан закон, согласно которому каждая точка плоскости переходит в другую точку плоскости, и мы говорили, что при этом сохраняются любые расстояния, то есть .

Рассмотрим симметрию относительно прямой в пространстве.

Чтобы получить для заданной точки А симметричную точку относительно некоторой прямой а, нужно из точки А на прямую опустить перпендикуляр и отложить на нем равный отрезок (рисунок 2).

Рис. 2. Симметрия относительно прямой в пространстве

Определение.

Точки А и называются симметричными относительно прямой а (ось симметрии) если прямая а проходит через середину отрезка и перпендикулярна ему. Каждая точка прямой симметрична сама себе.

Определение.

Точки А и называются симметричными относительно плоскости (плоскость симметрии) если плоскость проходит через середину отрезка и перпендикулярна ему. Каждая точка плоскости симметрична сама себе (рисунок 3).

Рис. 3. Симметрия относительно плоскости

Некоторые геометрические фигуры могут иметь центр симметрии, ось симметрии, плоскость симметрии.

Определение.

Точка О называется центром симметрии фигуры если каждая точка фигуры симметрична относительно нее некоторой точке той же фигуры.

Например, в параллелограмме и параллелепипеде точка пересечения всех диагоналей является центром симметрии. Проиллюстрируем для параллелепипеда.

Рис. 4. Центр симметрии параллелепипеда

Так, при симметрии относительно точки О в параллелепипеде точка А переходит в точку , точка В - в точку и т. д., таким образом, параллелепипед переходит сам в себя.

Определение.

Прямая называется осью симметрии фигуры если каждая точка фигуры симметрична относительно нее некоторой точке той же фигуры.

Например, каждая диагональ ромба является для него осью симметрии, ромб переходит сам в себя при симметрии относительно любой из диагоналей.

Рассмотрим пример в пространстве - прямоугольный параллелепипед (боковые ребра перпендикулярны основаниям, в основаниях - равные прямоугольники). Такой параллелепипед имеет оси симметрии. Одна из них проходит через центр симметрии параллелепипеда (точку пересечения диагоналей) и центры верхнего и нижнего оснований.

Определение.

Плоскость называется плоскостью симметрии фигуры, если каждая точка фигуры симметрична относительно нее некоторой точке той же фигуры.

Например, прямоугольный параллелепипед имеет плоскости симметрии. Одна из них проходит через середины противоположных ребер верхнего и нижнего оснований (рисунок 5).

Рис. 5. Плоскость симметрии прямоугольного параллелепипеда

Элементы симметрии присущи правильным многогранникам.

Определение.

Выпуклый многогранник называется правильным, если все его грани - равные правильные многоугольники, а в каждой вершине сходится одинаковое число ребер.

Теорема.

Не существует правильного многогранника, гранями которого являются правильные n-угольники при .

Доказательство:

Рассмотрим случай, когда - правильный шестиугольник. Все его внутренние углы равны :

Тогда при внутренние углы будут и больше.

В каждой вершине многогранника сходятся не менее трех ребер, значит, в каждой вершине содержится не менее трех плоских углов. Их общая сумма (при условии, что каждый больше либо равен ) больше либо равна . Это противоречит утверждению: в выпуклом многограннике сумма плоских всех углов при каждой вершине меньше .

Теорема доказана.

Куб (рисунок 6):

Рис. 6. Куб

Куб составлен из шести квадратов; квадрат - это правильный многоугольник;

Каждая вершина - это вершина трех квадратов, например вершина А - общая для граней-квадратов ABCD, ;

Сумма всех плоских углов при каждой вершине составляет , т. к. состоит из трех прямых углов. Это меньше , что удовлетворяет понятию правильного многогранника;

Куб имеет центр симметрии - точка пересечения диагоналей;

Куб имеет оси симметрии, например прямые а и b (рисунок 6), где прямая а проходит через середины противоположных граней, а b - через середины противоположных ребер;

Куб имеет плоскости симметрии, например плоскость, которая проходит через прямые а и b.

2. Правильный тетраэдр (правильная треугольная пирамида, все ребра которой равны между собой):

Рис. 7. Правильный тетраэдр

Правильный тетраэдр составлен из четырех равносторонних треугольников;

Сумма всех плоских углов при каждой вершине составляет , т. к. правильный тетраэдр состоит из трех плоских углов по . Это меньше , что удовлетворяет понятию правильного многогранника;

Правильный тетраэдр имеет оси симметрии, они проходят через середины противоположных ребер, например прямая MN. Кроме того, MN - расстояние между скрещивающимися прямыми АВ и CD, MN перпендикулярно ребрам АВ и CD;

Правильный тетраэдр имеет плоскости симметрии, каждая проходит через ребро и середину противоположного ребра (рисунок 7);

Правильный тетраэдр не имеет центра симметрии.

3. Правильный октаэдр:

Состоит из восьми равносторонних треугольников;

В каждой вершине сходятся по четыре ребра;

Сумма всех плоских углов при каждой вершине составляет , т. к. правильный октаэдр состоит из четырех плоских углов по . Это меньше , что удовлетворяет понятию правильного многогранника.

4. Правильный икосаэдр:

Состоит из двадцати равносторонних треугольников;

В каждой вершине сходятся по пять ребер;

Сумма всех плоских углов при каждой вершине составляет , т. к. правильный икосаэдр состоит из пяти плоских углов по . Это меньше , что удовлетворяет понятию правильного многогранника.

5. Правильный додекаэдр:

Состоит из двенадцати правильных пятиугольников;

В каждой вершине сходятся по три ребра;

Сумма всех плоских углов при каждой вершине составляет . Это меньше , что удовлетворяет понятию правильного многогранника.

Итак, мы рассмотрели виды симметрии в пространстве и дали строгие определения. Также определили понятие правильного многогранника, рассмотрели примеры таких многогранников и их свойства.

Список литературы

  1. И. М. Смирнова, В. А. Смирнов. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е изд., испр. и доп. - М.: Мнемозина, 2008. - 288 с.: ил.
  2. Шарыгин И. Ф. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. - М.: Дрофа, 1999. - 208 с.: ил.
  3. Е. В. Потоскуев, Л. И. Звалич. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. - 6-е изд., стереотип. - М.: Дрофа, 2008. - 233 с.: ил.
  1. Matemonline.com ().
  2. Fmclass.ru ().
  3. 5klass.net ().

Домашнее задание

  1. Укажите количество осей симметрии прямоугольного параллелепипеда;
  2. укажите количество осей симметрии правильной пятиугольной призмы;
  3. укажите количество плоскостей симметрии октаэдра;
  4. постройте пирамиду, у которой есть все элементы симметрии.


Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: